- #1
- 24,772
- 792
Indicate the papers you think will prove most significant for future Loop-and-allied QG research. The poll is multiple choice, so it's possible to vote for several. Abstracts follow in the next post.
The poll format has been expanded so as to allow more candidates. I brought forward three that more than one person voted for earlier this quarter, and include them here in a combined poll covering the whole quarter.
http://arxiv.org/abs/1412.8247
Pachner moves in a 4d Riemannian holomorphic Spin Foam model
Andrzej Banburski, Lin-Qing Chen, Laurent Freidel, Jeff Hnybida
http://arxiv.org/abs/1412.7546
SL(2,C) Chern-Simons Theory, a non-Planar Graph Operator, and 4D Loop Quantum Gravity with a Cosmological Constant: Semiclassical Geometry
Hal M. Haggard, Muxin Han, Wojciech Kamiński, Aldo Riello
http://arxiv.org/abs/1412.7435
Horizon entropy with loop quantum gravity methods
Daniele Pranzetti, Hanno Sahlmann
http://arxiv.org/abs/1412.6015
On the Effective Metric of a Planck Star
Tommaso De Lorenzo, Costantino Pacilio, Carlo Rovelli, Simone Speziale
http://arxiv.org/abs/1412.5851
Black holes as gases of punctures with a chemical potential: Bose-Einstein condensation and logarithmic corrections to the entropy
Olivier Asin, Jibril Ben Achour, Marc Geiller, Karim Noui, Alejandro Perez
http://arxiv.org/abs/1412.3752
Flux formulation of loop quantum gravity: Classical framework
Bianca Dittrich, Marc Geiller
http://arxiv.org/abs/1412.2914
A ΛCDM bounce scenario
Yi-Fu Cai, Edward Wilson-Ewing
http://arxiv.org/abs/1411.5672
Canonical linearized Regge Calculus: counting lattice gravitons with Pachner moves
Philipp A. Hoehn
http://arxiv.org/abs/1411.3589
Projective Limits of State Spaces I. Classical Formalism
Suzanne Lanéry, Thomas Thiemann
http://arxiv.org/abs/1411.3590
Projective Limits of State Spaces II. Quantum Formalism
Suzanne Lanéry, Thomas Thiemann
http://arxiv.org/abs/1411.3591
Projective Limits of State Spaces III. Toy-Models
Suzanne Lanéry, Thomas Thiemann
http://arxiv.org/abs/1411.3592
Projective Loop Quantum Gravity I. State Space
Suzanne Lanéry, Thomas Thiemann
http://arxiv.org/abs/1411.0977
Geometry and the Quantum: Basics
Ali H. Chamseddine, Alain Connes, Viatcheslav Mukhanov
http://arxiv.org/abs/1410.1714
Loop quantum gravity and observations
A. Barrau, J. Grain
The poll format has been expanded so as to allow more candidates. I brought forward three that more than one person voted for earlier this quarter, and include them here in a combined poll covering the whole quarter.
http://arxiv.org/abs/1412.8247
Pachner moves in a 4d Riemannian holomorphic Spin Foam model
Andrzej Banburski, Lin-Qing Chen, Laurent Freidel, Jeff Hnybida
http://arxiv.org/abs/1412.7546
SL(2,C) Chern-Simons Theory, a non-Planar Graph Operator, and 4D Loop Quantum Gravity with a Cosmological Constant: Semiclassical Geometry
Hal M. Haggard, Muxin Han, Wojciech Kamiński, Aldo Riello
http://arxiv.org/abs/1412.7435
Horizon entropy with loop quantum gravity methods
Daniele Pranzetti, Hanno Sahlmann
http://arxiv.org/abs/1412.6015
On the Effective Metric of a Planck Star
Tommaso De Lorenzo, Costantino Pacilio, Carlo Rovelli, Simone Speziale
http://arxiv.org/abs/1412.5851
Black holes as gases of punctures with a chemical potential: Bose-Einstein condensation and logarithmic corrections to the entropy
Olivier Asin, Jibril Ben Achour, Marc Geiller, Karim Noui, Alejandro Perez
http://arxiv.org/abs/1412.3752
Flux formulation of loop quantum gravity: Classical framework
Bianca Dittrich, Marc Geiller
http://arxiv.org/abs/1412.2914
A ΛCDM bounce scenario
Yi-Fu Cai, Edward Wilson-Ewing
http://arxiv.org/abs/1411.5672
Canonical linearized Regge Calculus: counting lattice gravitons with Pachner moves
Philipp A. Hoehn
http://arxiv.org/abs/1411.3589
Projective Limits of State Spaces I. Classical Formalism
Suzanne Lanéry, Thomas Thiemann
http://arxiv.org/abs/1411.3590
Projective Limits of State Spaces II. Quantum Formalism
Suzanne Lanéry, Thomas Thiemann
http://arxiv.org/abs/1411.3591
Projective Limits of State Spaces III. Toy-Models
Suzanne Lanéry, Thomas Thiemann
http://arxiv.org/abs/1411.3592
Projective Loop Quantum Gravity I. State Space
Suzanne Lanéry, Thomas Thiemann
http://arxiv.org/abs/1411.0977
Geometry and the Quantum: Basics
Ali H. Chamseddine, Alain Connes, Viatcheslav Mukhanov
http://arxiv.org/abs/1410.1714
Loop quantum gravity and observations
A. Barrau, J. Grain