MHB Polynomial with five roots: determine the roots of the equation x^5+ax^4+bx^3+cx^2+dx+e=0 as functions of a,d and e

Click For Summary
The discussion focuses on determining the roots of the polynomial equation x^5 + ax^4 + bx^3 + cx^2 + dx + e = 0 as functions of a, d, and e, correcting a previous typo regarding the variables. The equation is specified to have two roots with a product of 1 and two other roots with a product of -1. The participants aim to derive the roots under the condition that e is not equal to zero. A suggested solution is provided, although the details of that solution are not included in the summary. The importance of accurately presenting mathematical challenges is emphasized to avoid confusion in future discussions.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
I am so sorry for having posted this challenge/puzzle with a serious typo:

The roots of the equation should be functions of $a, d$ and $e$. In my old version I wrote $a, b$ and $e$.

I will see to, that future challenges are properly debugged before posting.For $e \ne 0$, determine the roots of the equation $x^5+ax^4+bx^3+cx^2+dx+e = 0$
as functions of $a, d$ and $e$, given that the equation has two roots whose product is $1$ and
two other roots whose product is $−1$.
 
Last edited:
Mathematics news on Phys.org
Here´s the suggested solution:
Let the roots be $p, \frac{1}{p}, q, -\frac{1}{q}$ and $r$.

(1). $p \cdot \frac{1}{p} \cdot q \cdot( -\frac{1}{q})\cdot r = -e$ so $r = e$.

(2). $(p + \frac{1}{p}) + (q - \frac{1}{q})+r = -a$ so $(p + \frac{1}{p}) + (q - \frac{1}{q}) = -(a+e)$.

(3). $-\frac{e}{p}-ep-\frac{e}{q}+eq-1 = d$ so $(p + \frac{1}{p}) - (q - \frac{1}{q}) = -\frac{d+1}{e}$.

From this, we get:

$$p+\frac{1}{p} = \frac{1}{2}(-(a+e)-\frac{d+1}{e}) = -\frac{1}{2e}(e^2+ae+d+1) = A,$$

$$q - \frac{1}{q} = \frac{1}{2}(\frac{d+1}{e}-(a+e)) = -\frac{1}{2e}(e^2+ae-d-1) = B.$$

Then $p^2-Ap+1 =0$ or $p = \frac{1}{2}(A\pm \sqrt{A^2-4})$ and $\frac{1}{p}=A-p = \frac{1}{2}(A\mp \sqrt{A^2-4})$.
We may use the plus sign for $p$ and the minus sign for $\frac{1}{p}$.
Similarly, we have $q = \frac{1}{2}(B + \sqrt{B^2+4})$ and $\frac{1}{q} = \frac{1}{2}(B - \sqrt{B^2+4})$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
9
Views
3K
  • · Replies 16 ·
Replies
16
Views
5K