MHB Polynomial with five roots: determine the roots of the equation x^5+ax^4+bx^3+cx^2+dx+e=0 as functions of a,d and e

AI Thread Summary
The discussion focuses on determining the roots of the polynomial equation x^5 + ax^4 + bx^3 + cx^2 + dx + e = 0 as functions of a, d, and e, correcting a previous typo regarding the variables. The equation is specified to have two roots with a product of 1 and two other roots with a product of -1. The participants aim to derive the roots under the condition that e is not equal to zero. A suggested solution is provided, although the details of that solution are not included in the summary. The importance of accurately presenting mathematical challenges is emphasized to avoid confusion in future discussions.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
I am so sorry for having posted this challenge/puzzle with a serious typo:

The roots of the equation should be functions of $a, d$ and $e$. In my old version I wrote $a, b$ and $e$.

I will see to, that future challenges are properly debugged before posting.For $e \ne 0$, determine the roots of the equation $x^5+ax^4+bx^3+cx^2+dx+e = 0$
as functions of $a, d$ and $e$, given that the equation has two roots whose product is $1$ and
two other roots whose product is $−1$.
 
Last edited:
Mathematics news on Phys.org
Here´s the suggested solution:
Let the roots be $p, \frac{1}{p}, q, -\frac{1}{q}$ and $r$.

(1). $p \cdot \frac{1}{p} \cdot q \cdot( -\frac{1}{q})\cdot r = -e$ so $r = e$.

(2). $(p + \frac{1}{p}) + (q - \frac{1}{q})+r = -a$ so $(p + \frac{1}{p}) + (q - \frac{1}{q}) = -(a+e)$.

(3). $-\frac{e}{p}-ep-\frac{e}{q}+eq-1 = d$ so $(p + \frac{1}{p}) - (q - \frac{1}{q}) = -\frac{d+1}{e}$.

From this, we get:

$$p+\frac{1}{p} = \frac{1}{2}(-(a+e)-\frac{d+1}{e}) = -\frac{1}{2e}(e^2+ae+d+1) = A,$$

$$q - \frac{1}{q} = \frac{1}{2}(\frac{d+1}{e}-(a+e)) = -\frac{1}{2e}(e^2+ae-d-1) = B.$$

Then $p^2-Ap+1 =0$ or $p = \frac{1}{2}(A\pm \sqrt{A^2-4})$ and $\frac{1}{p}=A-p = \frac{1}{2}(A\mp \sqrt{A^2-4})$.
We may use the plus sign for $p$ and the minus sign for $\frac{1}{p}$.
Similarly, we have $q = \frac{1}{2}(B + \sqrt{B^2+4})$ and $\frac{1}{q} = \frac{1}{2}(B - \sqrt{B^2+4})$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top