MHB Polynomial with five roots: determine the roots of the equation x^5+ax^4+bx^3+cx^2+dx+e=0 as functions of a,d and e

AI Thread Summary
The discussion focuses on determining the roots of the polynomial equation x^5 + ax^4 + bx^3 + cx^2 + dx + e = 0 as functions of a, d, and e, correcting a previous typo regarding the variables. The equation is specified to have two roots with a product of 1 and two other roots with a product of -1. The participants aim to derive the roots under the condition that e is not equal to zero. A suggested solution is provided, although the details of that solution are not included in the summary. The importance of accurately presenting mathematical challenges is emphasized to avoid confusion in future discussions.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
I am so sorry for having posted this challenge/puzzle with a serious typo:

The roots of the equation should be functions of $a, d$ and $e$. In my old version I wrote $a, b$ and $e$.

I will see to, that future challenges are properly debugged before posting.For $e \ne 0$, determine the roots of the equation $x^5+ax^4+bx^3+cx^2+dx+e = 0$
as functions of $a, d$ and $e$, given that the equation has two roots whose product is $1$ and
two other roots whose product is $−1$.
 
Last edited:
Mathematics news on Phys.org
Here´s the suggested solution:
Let the roots be $p, \frac{1}{p}, q, -\frac{1}{q}$ and $r$.

(1). $p \cdot \frac{1}{p} \cdot q \cdot( -\frac{1}{q})\cdot r = -e$ so $r = e$.

(2). $(p + \frac{1}{p}) + (q - \frac{1}{q})+r = -a$ so $(p + \frac{1}{p}) + (q - \frac{1}{q}) = -(a+e)$.

(3). $-\frac{e}{p}-ep-\frac{e}{q}+eq-1 = d$ so $(p + \frac{1}{p}) - (q - \frac{1}{q}) = -\frac{d+1}{e}$.

From this, we get:

$$p+\frac{1}{p} = \frac{1}{2}(-(a+e)-\frac{d+1}{e}) = -\frac{1}{2e}(e^2+ae+d+1) = A,$$

$$q - \frac{1}{q} = \frac{1}{2}(\frac{d+1}{e}-(a+e)) = -\frac{1}{2e}(e^2+ae-d-1) = B.$$

Then $p^2-Ap+1 =0$ or $p = \frac{1}{2}(A\pm \sqrt{A^2-4})$ and $\frac{1}{p}=A-p = \frac{1}{2}(A\mp \sqrt{A^2-4})$.
We may use the plus sign for $p$ and the minus sign for $\frac{1}{p}$.
Similarly, we have $q = \frac{1}{2}(B + \sqrt{B^2+4})$ and $\frac{1}{q} = \frac{1}{2}(B - \sqrt{B^2+4})$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top