I Polynomials can be used to generate a finite string of primes....

mathman
Science Advisor
Homework Helper
Messages
8,130
Reaction score
573
TL;DR Summary
Polynomials can be used to generate a finite string of primes
F(n)=##n^2 −n+41## generates primes for all n<41.

Questions:
(1) Are there polynomials that have longer lists?

(2) Is such a list of polynomials finite (yes, no, unknown)?

(3) Same questions for quadratic polynomials?
 
Last edited by a moderator:
Mathematics news on Phys.org
(1) Yes.
(2) No.
(3) I don't think so. No for any list, yes, for longer lists.
 
It doesn't even have to be quadratic: the Green-Tao theorem states that for any positive integer ##k##, there exists a prime arithmetic progression of length ##k##. In other words, for any ##k##, there exists a prime ##p## and a positive integer ##n## which generates the sequence ##\{p, p+n, p+2n, \dots p+(k-1)n\}## where all the members of the sequence are prime.
 
  • Like
  • Informative
Likes Janosh89, Wrichik Basu, fresh_42 and 2 others
To expand on @TeethWhitener mention of the Green-Tao Theorem, here is a seminar on the theorem:



Since this thread has run its course, it's time to close it and thank everyone who contributed here.

Jedi
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top