Population drop word problem -- help with the Algebra please

Click For Summary

Homework Help Overview

The problem involves determining the time it takes for a population of bacteria, initially at 10^6, to experience a 70% reduction due to a noxious substance that kills one-tenth of the remaining bacteria every 10 minutes. Participants are exploring the mathematical modeling of this decay process.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss various equation setups and question the validity of their approaches, including exponential decay models and the interpretation of the decay factor. There are attempts to express the remaining population after multiple time periods and to derive the correct formula for the problem.

Discussion Status

The discussion is ongoing, with participants providing guidance on modeling the decay process and questioning assumptions about the setup. Some participants suggest different mathematical approaches, while others clarify the implications of the decay factor and the need for consistent units in equations.

Contextual Notes

There is a recognition of the constraints imposed by homework rules, such as not providing complete solutions. Participants are encouraged to explore the problem further and identify patterns in the decay process.

  • #31
opus said:
Every ten minutes, a tenth of the bacteria are KILLED.
At 10 minutes: a tenth of 10^6 bacteria are killed. This leaves 100,000 remaining.
No. If a tenth are killed, that is 100,000 killed and 1,000,000-100,000 = 900,000 remaining.
At 20 minutes : a tenth of the 100,000 bacteria are killed. This leaves 10,000 remaining.
A tenth of 900,000 are killed. That is 90,000 killed and 900,000 - 90,000 = 810,000 remaining.
At 30 minutes: a tenth of 810,000 are killed. That is 81,000 killed and 810,000 - 81,000 = 729,000 remaining.
...
So the approach of calculating the killed at each step requires that you keep subtracting the killed from the remaining living at each time step.
It's easier to directly calculate the living by multiplying the remaining living at each step by 0.9. Then you don't have to keep doing a subtraction:
10^6 * 0.9 = 900,000
900,000 * 0.9 = 810,000
810,000 * 0.9 = 729,000
...
After ##n*10## minutes, there are ##10^6*0.9^n## remaining.
 
Last edited:
  • Like
Likes   Reactions: opus
Physics news on Phys.org
  • #32
FactChecker said:
No. If a tenth are killed, that is 100,000 killed and 1,000,000-100,000 = 900,000 remaining.A tenth of 900,000 are killed. That is 90,000 killed and 900,000 - 90,000 = 810,000 remaining.
At 30 minutes: a tenth of 810,000 are killed. That is 81,000 killed and 810,000 - 81,000 = 729,000 remaining.
...
So the approach of calculating the killed at each step requires that you keep subtracting the killed from the remaining living at each time step.
It's easier to directly calculate the living by multiplying the remaining living at each step by 0.9. Then you don't have to keep doing a subtraction:
10^6 * 0.9 = 900,000
900,000 * 0.9 = 810,000
810,000 * 0.9 = 729,000
...
After ##n*10## minutes, there are ##10^6*0.9^n## remaining.
From his comment of post #28 and #30, opus may finally understand.
 
  • Like
Likes   Reactions: opus
  • #33
FactChecker said:
No. If a tenth are killed, that is 100,000 killed and 1,000,000-100,000 = 900,000 remaining.A tenth of 900,000 are killed. That is 90,000 killed and 900,000 - 90,000 = 810,000 remaining.
At 30 minutes: a tenth of 810,000 are killed. That is 81,000 killed and 810,000 - 81,000 = 729,000 remaining.
...
So the approach of calculating the killed at each step requires that you keep subtracting the killed from the remaining living at each time step.
It's easier to directly calculate the living by multiplying the remaining living at each step by 0.9. Then you don't have to keep doing a subtraction:
10^6 * 0.9 = 900,000
900,000 * 0.9 = 810,000
810,000 * 0.9 = 729,000
...
After ##n*10## minutes, there are ##10^6*0.9^n## remaining.

I really need to work on my reading comprehension! Thanks for pointing that out to me.
 
  • #34
opus said:
I really need to work on my reading comprehension! Thanks for pointing that out to me.
Most of Reading Comprehension for Mathematics is very, very literal.
 
  • Like
Likes   Reactions: opus

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K