MHB Positive Definite Matrices and Their Properties

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Matrices Positive
AI Thread Summary
The discussion focuses on proving that both XX^T and X^TX are positive semidefinite for a matrix X in R^(d×n). It establishes that if X has rank d, then XX^T is positive definite and invertible. The proof involves showing that for any vector x, the expressions x^T(XX^T)x and (Xx)^T(Xx) yield non-negative results, confirming the positive semidefiniteness. The conversation also clarifies the distinction between the dimensions of x when applying these properties to X^TX. Overall, the participants engage in a mathematical exploration of matrix properties and seek guidance on specific proof steps.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

1. Prove that if X ∈ R^(d×n) then XX^T and X^TX are both positive semidefinite.
6. Prove that if X ∈ R^(d×n) has rank d, then XX^T is positive definite (invertible).

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
For all $x\in\mathbb{R}^{d\times 1}:$
$$x^T(XX^T)x=(X^Tx)^T(X^Tx)=(y_1,\ldots,y_n) \begin{pmatrix}{y_1}\\{\vdots}\\{y_n}\end{pmatrix}=y_1^2+\ldots+y_n^2\geq 0$$
which implies $XX^T$ is positive semidefinite (or positive definite). Similar arguments for $X^TX$.

If $\text{rank }X=d$, then $\text{rank }(XX^T)=\text{rank }X=d$, which implies $XX^T$ is invertible. This means that $XX^T$ is congruent to a matrix $\text{diag }(\alpha_1,\ldots,\alpha_d)$ with $\alpha_i>0$ for all $i$, as a consequence $XX^T$ is positive definite
 
When I try to solve the case for XTX I get stuck at the following:
xT(XTX)x = xTXTXx = (Xx)TXx

Please kindly guide me next step.
 
MrJava said:
When I try to solve the case for XTX I get stuck at the following: xT(XTX)x = xTXTXx = (Xx)TXx

Right. Now, the difference is that $x\in \mathbb{R}^{n\times 1}$ instead of $\mathbb{R}^{d\times 1}.$ So, for all $x\in \mathbb{R}^{n\times 1}$
$$(Xx)^T(Xx)=(w_1,\ldots,w_d) \begin{pmatrix}{w_1}\\{\vdots}\\{w_d}\end{pmatrix} =w_1^2+\ldots+w_d^2\geq 0$$
 
Fernando Revilla said:
Right. Now, the difference is that $x\in \mathbb{R}^{n\times 1}$ instead of $\mathbb{R}^{d\times 1}.$ So, for all $x\in \mathbb{R}^{n\times 1}$
$$(Xx)^T(Xx)=(w_1,\ldots,w_d) \begin{pmatrix}{w_1}\\{\vdots}\\{w_d}\end{pmatrix} =w_1^2+\ldots+w_d^2\geq 0$$

Ok I get the point, thank you.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top