MHB Positive Integer Solutions of $(x^2+y^2)^n=(xy)^{2014}$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer Positive
AI Thread Summary
The discussion focuses on finding all positive integers \( n \) such that the equation \( (x^2+y^2)^n=(xy)^{2014} \) has positive integer solutions. Participants acknowledge contributions, particularly from Opalg, who provided a partial solution deemed correct. A complete model solution is anticipated to be shared for further clarity. The conversation emphasizes the importance of collaborative problem-solving in mathematical inquiries. The thread aims to enhance understanding of the equation's properties and potential solutions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all positive integers $n$ for which the equation $(x^2+y^2)^n=(xy)^{2014}$ has positive integer solutions.
 
Mathematics news on Phys.org
anemone said:
Find all positive integers $n$ for which the equation $(x^2+y^2)^n=(xy)^{2014}$ has positive integer solutions.

I looked for solutions in which $x$ and $y$ are both equal to the same power of $2$.

So suppose that $x=y=2^k$. Then the equation becomes $\bigl(2^{2k+1}\bigr)^n = \bigl(2^{2k}\bigr)^{2014}$,
$2^{(2k+1)n} = 2^{4028k}$,
$(2k+1)n = 4028k = 4*19*53k$.
Since $k$ and $2k+1$ are co-prime, it follows that $2k+1$ must be an odd divisor of $4028$, namely $19$, $53$ or $19*53 = 1007$. The corresponding values of $k$ are $9$, $26$ and $503$. That gives these three solutions to the problem:

$x=y=2^9, \ n = 4*53*9 = 1908$,

$x=y=2^{26}, \ n = 4*19*26 = 1976$,

$x=y=2^{503}, \ n = 4*503 = 2012$.

That's as far as I can go. I believe that those three solutions should be the only ones, but I can't see how to prove that there are no others.
 
Thanks Opalg for your participation and the partial solution, which your answer is definitely correct.

I will post the model solution below, I hope you and the readers will enjoy reading the solution.
Assume that $(x^2+y^2)^n=(xy)^{2014}$ holds for some positive integers $n,\,x$ and $y$. From $x^2+y^2\ge 2xy>xy$ it follows that $n<2014$. Let $d=\gcd(x,\,y)$ and $a=\dfrac{x}{d}$, $b=\dfrac{y}{d}$. Then $d^{2n}(a^2+b^2)^n=d^{2\cdot 2014}(ab)^{2014}$, which gives the equality $(a^2+b^2)^n=d^{2\cdot (2014-n)}(ab)^{2014}$. As $b$ divides the right side of this equality, $(a^2+b^2)^n$ is divisible by $b$ as well. But because $\gcd(a,\,b)=1$, also $\gcd(a^2,\,b)=1$ and $\gcd(a^2+b^2,\,b)=1$ whence $\gcd((a^2+b^2)^n,\,b)=1$, so the only possibility is $b=1$. Due to symmetry, also, $a=1$. The above equality now takes the form $2^n=d^{2\cdot(2014-n)}$. Therefore, $d=2^k$ for some $k$ and $n=2k\cdot(2014-n)$, whence $n\cdot(2k+1)=4k\cdot 1007$. Since $\gcd(2k+1,\,4)=1$ and $\gcd(2k+1,\,k)=1$, $2k+1$ divides 1007. As $1007=19\cdot 53$ and $n$ has to be positive, the possible values for $k$ are 9, 26 and 503, and the corresponding values of $n$ are 1908, 1976 and 2012.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top