Superluminal signals using quantum entanglement(adsbygoogle = window.adsbygoogle || []).push({});

Please consider this thought experiment. Would this provide a means for communicating faster than light or is there an error somewhere in it?

SUMMARY: Person B can instantly know whether or not Person A did measurements on his particles by looking for an interference pattern with his entangled partner particles.

DETAILS:

A source sends entangled particle pairs in opposite directions. Each particle and its partner are in a superpostion of spin-up and spin-down states. As a particle reach Person A, he can choose to do a spin measurement or let it go by unmeasured. If he lets it go by, then its entangled partner will remain in a superposition. If he does a measurement, then its partner will instantly collapse to a definite spin state. Person B wants to know if his particle is in a superposition or a definite spin state. (He doesn't care if it is spin-up or spin-down.) So he puts a device in its path that uses a magnetic field to deflect it upward if its spin is up, downward if its spin is down, and both ways if it is in a superposition. The device brings the two paths out through slits that are very close together. Just as in the standard double slit experiment, if the particle followed both paths, it will interfere with itself and hit a screen at a spot allowed by the interference pattern mathematics.

Person B can not see an interference pattern with only one particle, so lets use batches of 1000 particles each. Person A receives particles one at a time every millisecond. He lets 1000 pass by to transmit a "1". He measures 1000 in a row to transmit a "0". Person B lets 1000 entangled partner particles pass through his double slit device, one at a time, and hit a screen. If he sees interference fringes, he writes down a "1". If he sees two spots behind the slits but no fringes, he writes down a "0". He then clears the screen and does the same thing with the next batch of 1000 particles.

The two scientists could be any distance apart, even many light-years. The collapse of the B particle's wavefunctions will occur instantly when (and if) person A does a measurement. So a binary message could be sent faster than light. This experiment could actually be done in a modern physics lab using high speed electronic devices.

Where is the error in this plan? Or could information really be transmitted faster than light, in violation of special relativity?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Possibility of superluminal signals using quantum entanglement

Loading...

Similar Threads - Possibility superluminal signals | Date |
---|---|

I For a particle on a sphere, is zero energy possible? | Yesterday at 12:56 PM |

I Wheeler's delayed choice doesn't change the past | Dec 27, 2017 |

B Possible Loophole in the uncertainty principle | Nov 2, 2017 |

B Is it possible for any wave to be in a complex of waves? | Jun 27, 2017 |

Is superluminal communication possible? | Sep 2, 2011 |

**Physics Forums - The Fusion of Science and Community**