Potential and Kinetic energy equations including drag coefficient

Click For Summary
SUMMARY

This discussion focuses on the calculations of potential and kinetic energy for golf and tennis balls, incorporating drag coefficient considerations. The initial potential energy for the golf ball is calculated as 4.312 x 10-14 J, while the final potential energy is 0 J. The initial kinetic energy is also 0 J, with the final kinetic energy calculated as 0.120 J. The discussion highlights the complexities of drag on accelerating objects, noting that drag transitions from linear to quadratic based on the Reynolds number, affecting the calculations of terminal velocity and energy loss due to drag.

PREREQUISITES
  • Understanding of potential energy and kinetic energy equations
  • Familiarity with drag coefficient concepts
  • Knowledge of Reynolds number and its implications
  • Basic calculus for modeling motion and energy loss
NEXT STEPS
  • Research the effects of drag coefficient on different shapes and sizes of objects
  • Learn about the Reynolds number and its significance in fluid dynamics
  • Explore numerical methods for solving quadratic drag equations
  • Study terminal velocity calculations for various objects in free fall
USEFUL FOR

Physics students, engineers, and anyone interested in the dynamics of motion and energy transfer in objects experiencing drag.

ET333
Messages
1
Reaction score
0
Homework Statement
I am currently writing a paper on conservation of energy in which I dropped a ball and calculated potential and kinetic energy. The issue I am having is that I have no idea how to incorporate drag force into my equations for P and K energy and also into my uncertainties. I have been looking every where for answers but cannot seem to find them. Please help!
Relevant Equations
Ke+Pe=Ke+Pe
Ke= 1/2 mv^2
Pe= mgh
1. Golf ball initial potential energy uncertainty (110-5kg 0.01 m 0.01m/s2)= 110-9J4.31210-5=4.31210-14j
2. Golf ball initial potential energy calculation (4.4 x10-4kg 9.8 m/s2 0.609 m)= 4.31210-54.31210-14j
3.Golf ball final potential energy uncertainty ( 110-5kg 0.0 m0.01 m/s2)= 0.0 J
4. Golf ball final potential energy calculation (4.4 x10-4kg 9.8 m/s2 0.0 m)= 0 0J
5. Initial velocity of golf ball Vi=dt → Vf=0.0m0.0 seconds =0m/s0J
6. Kinetic energy of golf ball initial calculation 1/2(4.4 x10-4kg0 m/s2)= 00 J
8. Final Kinetic energy of golf ball calculation 1/2(4.4 x10-4kg1.353 m/s2)= 4.0210-4 0.120 J
Final velocity of the golf ball uncertainty Vf uncertainty= 0.01m0.609m+0.01 seconds0.45 seconds=0.386 m/s
9. 1/2(4.4 x10-4kg1.353 m/s)= 4.0210-42.4710-5 J
10. Final kinetic energy uncertainty of the golf ball
((110-5kg4.410-4g)2+(20.0386m/s1.353m/s)2= 6.1410-2 x 4.0210-4 J=2.4710-5J
11. Initial Kinetic energy of golf ball calculation 1/2(4.4 x10-4kg0m/s2)=00 J
12. Initial kinetic energy uncertainty of the golf ball (110-5kg4.410-4g)2+(20.0m/s0.0m.s)2= 0.00 x 0.00 J=0.00J
13. Conservation of energy calculation
4.31210-54.31210-14J=4.0210-42.4710-5 J14. Tennis ball initial potential energy uncertainty (110-5kg 0.01 m 0.01m/s2)= 110-9J3.2810-4J=3.2810-12j
15. Tennis ball initial potential energy calculation (5.5 x10-4kg 9.8 m/s2 0.609 m)=3.28210-33.2810-12J
16.Tennis ball final potential energy uncertainty ( 110-5kg 0.0 m0.01 m/s2)= 0.0 J
17. Tennis ball final potential energy calculation (5.5 x10-4kg 9.8 m/s2 0.0 m)= 0 0J
18. Initial velocity of golf ball Vi=dt → Vf=0.0m0.0 seconds =0m/s0J
Final velocity of golf ball Vi=dt → Vf=0.609m0.47 seconds =1.295 m/s
19. Kinetic energy of golf ball initial calculation 1/2(3.28 x10-4kg0 m/s2)= 00 J
20. Final Kinetic energy of golf ball calculation 1/2(5.5 x10-4kg(1.295 m/s)2)=4.6110-42.7610-5J
21. Final velocity of the tennis ball Vf = 0.609m0.47s=1.296m/s
22. Final velocity of the tennis ball uncertainty Vf uncertainty= 0.01m0.609m+0.01 seconds0.47 seconds=0.037 m/s

23. Final kinetic energy uncertainty of the tennis ball
((110-5kg5.510-4g)2+(20.037m/s1.29m/s)2= 5.9910-2 x 4.6110-4J=2.7610-5J
24. Initial Kinetic energy of tennis ball calculation 1/2(5.5 x10-4kg0m/s2)=00 J
25. Initial kinetic energy uncertainty of the tennis ball (110-5kg5.510-4g)2+(20.0m/s0.0m.s)2= 0.00 x 0.00 J=0.00J
26. Conservation of energy tennis ball drop
3.28210-33.2810-12J = 4.6110-42.7610-5J
 
Physics news on Phys.org
Drag on an accelerating object is a bit complicated. Starting from rest it is a linear function of speed, but at higher speeds transitions to quadratic. The transition point is determined by the Reynolds number. I am not sure where it would be in the context of your experiment.

If it is all in the linear phase then there is a closed form solution of the form ##v(t)=v_{terminal}(1-e^{-\rho t})##.
There is no closed form solution to the quadratic form, but if the drop were far enough to achieve terminal velocity (it will not be for your data) then you could calculate the terminal velocity and deduce the work lost to drag.
Or you could model quadratic drag and get a numeric solution.
 
  • Like
Likes   Reactions: ET333

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
1K
Replies
55
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
14K