Potential and Kinetic energy equations including drag coefficient

AI Thread Summary
The discussion focuses on the calculations of potential and kinetic energy for golf and tennis balls, including uncertainties in measurements. Initial potential energy for both balls is calculated, showing values close to zero at their final positions. The kinetic energy calculations reveal that the golf ball's final kinetic energy is approximately 0.120 J, while the tennis ball's final kinetic energy is around 0.0276 J. Drag effects on the balls are noted, indicating that drag is complex and varies with speed, transitioning from linear to quadratic based on the Reynolds number. The conversation concludes with suggestions for modeling drag effects and calculating terminal velocity, although the experimental conditions may not allow for achieving terminal velocity.
ET333
Messages
1
Reaction score
0
Homework Statement
I am currently writing a paper on conservation of energy in which I dropped a ball and calculated potential and kinetic energy. The issue I am having is that I have no idea how to incorporate drag force into my equations for P and K energy and also into my uncertainties. I have been looking every where for answers but cannot seem to find them. Please help!
Relevant Equations
Ke+Pe=Ke+Pe
Ke= 1/2 mv^2
Pe= mgh
1. Golf ball initial potential energy uncertainty (110-5kg 0.01 m 0.01m/s2)= 110-9J4.31210-5=4.31210-14j
2. Golf ball initial potential energy calculation (4.4 x10-4kg 9.8 m/s2 0.609 m)= 4.31210-54.31210-14j
3.Golf ball final potential energy uncertainty ( 110-5kg 0.0 m0.01 m/s2)= 0.0 J
4. Golf ball final potential energy calculation (4.4 x10-4kg 9.8 m/s2 0.0 m)= 0 0J
5. Initial velocity of golf ball Vi=dt → Vf=0.0m0.0 seconds =0m/s0J
6. Kinetic energy of golf ball initial calculation 1/2(4.4 x10-4kg0 m/s2)= 00 J
8. Final Kinetic energy of golf ball calculation 1/2(4.4 x10-4kg1.353 m/s2)= 4.0210-4 0.120 J
Final velocity of the golf ball uncertainty Vf uncertainty= 0.01m0.609m+0.01 seconds0.45 seconds=0.386 m/s
9. 1/2(4.4 x10-4kg1.353 m/s)= 4.0210-42.4710-5 J
10. Final kinetic energy uncertainty of the golf ball
((110-5kg4.410-4g)2+(20.0386m/s1.353m/s)2= 6.1410-2 x 4.0210-4 J=2.4710-5J
11. Initial Kinetic energy of golf ball calculation 1/2(4.4 x10-4kg0m/s2)=00 J
12. Initial kinetic energy uncertainty of the golf ball (110-5kg4.410-4g)2+(20.0m/s0.0m.s)2= 0.00 x 0.00 J=0.00J
13. Conservation of energy calculation
4.31210-54.31210-14J=4.0210-42.4710-5 J14. Tennis ball initial potential energy uncertainty (110-5kg 0.01 m 0.01m/s2)= 110-9J3.2810-4J=3.2810-12j
15. Tennis ball initial potential energy calculation (5.5 x10-4kg 9.8 m/s2 0.609 m)=3.28210-33.2810-12J
16.Tennis ball final potential energy uncertainty ( 110-5kg 0.0 m0.01 m/s2)= 0.0 J
17. Tennis ball final potential energy calculation (5.5 x10-4kg 9.8 m/s2 0.0 m)= 0 0J
18. Initial velocity of golf ball Vi=dt → Vf=0.0m0.0 seconds =0m/s0J
Final velocity of golf ball Vi=dt → Vf=0.609m0.47 seconds =1.295 m/s
19. Kinetic energy of golf ball initial calculation 1/2(3.28 x10-4kg0 m/s2)= 00 J
20. Final Kinetic energy of golf ball calculation 1/2(5.5 x10-4kg(1.295 m/s)2)=4.6110-42.7610-5J
21. Final velocity of the tennis ball Vf = 0.609m0.47s=1.296m/s
22. Final velocity of the tennis ball uncertainty Vf uncertainty= 0.01m0.609m+0.01 seconds0.47 seconds=0.037 m/s

23. Final kinetic energy uncertainty of the tennis ball
((110-5kg5.510-4g)2+(20.037m/s1.29m/s)2= 5.9910-2 x 4.6110-4J=2.7610-5J
24. Initial Kinetic energy of tennis ball calculation 1/2(5.5 x10-4kg0m/s2)=00 J
25. Initial kinetic energy uncertainty of the tennis ball (110-5kg5.510-4g)2+(20.0m/s0.0m.s)2= 0.00 x 0.00 J=0.00J
26. Conservation of energy tennis ball drop
3.28210-33.2810-12J = 4.6110-42.7610-5J
 
Physics news on Phys.org
Drag on an accelerating object is a bit complicated. Starting from rest it is a linear function of speed, but at higher speeds transitions to quadratic. The transition point is determined by the Reynolds number. I am not sure where it would be in the context of your experiment.

If it is all in the linear phase then there is a closed form solution of the form ##v(t)=v_{terminal}(1-e^{-\rho t})##.
There is no closed form solution to the quadratic form, but if the drop were far enough to achieve terminal velocity (it will not be for your data) then you could calculate the terminal velocity and deduce the work lost to drag.
Or you could model quadratic drag and get a numeric solution.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top