• Support PF! Buy your school textbooks, materials and every day products Here!

Potential at center of sphere of radius R and charge -Q

  • #1
165
6

Homework Statement


What is the potential at the center of the sphere relative to infinity? The sphere is dielectric with uniform - charge on the surface of the sphere.

Homework Equations


##k=\frac {1}{4\pi\epsilon_0}##
##V=\frac {KQ}{r}##

The Attempt at a Solution


If the distance r=0 it would be wrong to have that in the denominator, so I put it as ##V=\lim_{r \rightarrow 0} \frac {-KQ}{r}=-\infty## It makes sense that your potential would be infinitely small since you are approaching the negative source charge at the center of the sphere
 

Answers and Replies

  • #2
TSny
Homework Helper
Gold Member
12,526
2,950
For a sphere with a uniform surface charge, the equation ##V = \frac{kQ}{r}## only holds for points outside the sphere or for points on the surface of the sphere.

It will be helpful to think about the nature of the electric field inside the sphere.
 
  • #3
165
6
For a sphere with a uniform surface charge, the equation ##V = \frac{kQ}{r}## only holds for points outside the sphere or for points on the surface of the sphere.

It will be helpful to think about the nature of the electric field inside the sphere.
The electric field inside the sphere is 0. I have that down, but I read that even thought the electric field is 0, the potential at one point inside the sphere is not 0, only your ##\Delta V## is 0
 
  • #4
TSny
Homework Helper
Gold Member
12,526
2,950
The electric field inside the sphere is 0. I have that down, but I read that even thought the electric field is 0, the potential at one point inside the sphere is not 0, only your ##\Delta V## is 0
Yes. So, what is the difference in ##V## between the center of the sphere and a point on the surface of the sphere?
 
  • #5
165
6
Yes. So, what is the difference in ##V## between the center of the sphere and a point on the surface of the sphere?
It would be 0. But I'm not sure that's what the question is asking, otherwise it would be too simple for a 5 mark question. They want me to find ##\Delta V=-\int_\infty^r \frac {K(-Q)}{r^2}dr## to just get ##V=\frac {k(-Q)}{r}## and and if r is zero wouldn't it be infinitely small?
 
  • #6
TSny
Homework Helper
Gold Member
12,526
2,950
It would be 0. But I'm not sure that's what the question is asking, otherwise it would be too simple for a 5 mark question. They want me to find ##\Delta V=-\int_\infty^r \frac {K(-Q)}{r^2}dr## to just get ##V=\frac {k(-Q)}{r}## and if r is zero wouldn't it be infinitely big?
The equation ##\Delta V=-\int_\infty^r \frac {K(-Q)}{r^2}dr## is valid only if the upper limit, ##r##, of the integral is greater than or equal to the radius ##R## of the sphere. This is because the integrand ## \frac {K(-Q)}{r^2}## represents the electric field only for points outside the sphere (##r > R##). As you noted, the electric field is zero inside the sphere.
 
Last edited:
  • Like
Likes Zack K
  • #7
165
6
The equation ##\Delta V=-\int_\infty^r \frac {K(-Q)}{r^2}dr## is valid only if the upper limit, ##r##, of the integral is greater than the radius ##R## of the sphere. This is because the integrand ## \frac {K(-Q)}{r^2}## represents the electric field only for points outside the sphere (##r > R##). As you noted, the electric field is zero inside the sphere.
Hmmm that makes sense now, thanks for pointing that out. So I guess that the potential is zero.
 
  • #8
TSny
Homework Helper
Gold Member
12,526
2,950
Hmmm that makes sense now, thanks for pointing that out. So I guess that the potential is zero.
The potential at the center of the sphere will not be zero. How does the potential at the center of the sphere compare to the potential at the surface of the sphere?
 
  • #9
TSny
Homework Helper
Gold Member
12,526
2,950
You can think of it this way. The change in potential in going from infinity to the center of the sphere is ##V_{r = 0} - V_{r = \infty}=-\int_{\infty}^0 Edr##.

Since the mathematical form of the electric field inside the sphere is different from the mathematical form outside the sphere, we break up the integration. First, integrate from infinity to the surface of the sphere, and then integrate from the surface to the center. So,

##V_{r = 0} - V_{\infty}= -\int_\infty^R E_{\rm outside}dr -\int_R^0 E_{\rm inside}dr ##

What should you substitute for ##E_{\rm outside}## and for ##E_{\rm inside}##?
 
  • Like
Likes Zack K
  • #10
165
6
You can think of it this way. The change in potential in going from infinity to the center of the sphere is ##V_{r = 0} - V_{r = \infty}=-\int_{\infty}^0 Edr##.

Since the mathematical form of the electric field inside the sphere is different than the mathematical form outside the sphere, we break up the integration. First, integrate from infinity to the surface of the sphere, and then integrate from the surface to the center. So,

##V_{r = 0} - V_{\infty}= -\int_\infty^R E_{\rm outside}dr -\int_R^0 E_{\rm inside}dr ##

What should you substitute for ##E_{\rm outside}## and for ##E_{\rm inside}##?
I actually never knew you could describe the electric field inside a sphere. I'll derive it and get back to you.
 
  • #11
TSny
Homework Helper
Gold Member
12,526
2,950
I actually never knew you could describe the electric field inside a sphere. I'll derive it and get back to you.
But you already stated correctly the value of the electric field inside the sphere in post #3.
 
  • #12
165
6
But you already stated correctly the value of the electric field inside the sphere in post #3.
Right so I would substitute 0 for ##E_{inside}##? So the potential at the center would just be the potential from the surface of the sphere to infinity?
 
  • #13
TSny
Homework Helper
Gold Member
12,526
2,950
Right so I would substitute 0 for ##E_{inside}##? So the potential at the center would just be the potential from the surface of the sphere to infinity?
Yes, that's right. As you move from the surface to the center, there is no change in potential since E = 0 everywhere inside.

I'll add one other comment sort of as an aside. If an object has a negative charge, most people would write the symbol for the charge as ##Q##, not ##-Q##. It would be understood that ##Q## has a value that is negative.
 
  • Like
Likes Zack K
  • #14
165
6
Yes, that's right. As you move from the surface to the center, there is no change in potential since E = 0 everywhere inside.

I'll add one other comment sort of as an aside. If an object has a negative charge, most people would write the symbol for the charge as ##Q##, not ##-Q##. It would just be understood that ##Q## has a value that is negative.
Right, thank you so much.
 
  • #15
525
145
We have ##\vec{E} = -\nabla V## with ##\nabla f## being in cartesian, cylindrical and spherical coordinates respectively (substitue ##f## with ##V##) :
Capture.png

Inside the sphere ##\vec{E} = \vec{0}##, what do we differentiate to obtain ##0##? A constant! Thus the potential inside the sphere is constant and it is equal to the potential on its surface.
 

Attachments

Related Threads on Potential at center of sphere of radius R and charge -Q

Replies
7
Views
734
Replies
1
Views
4K
Replies
1
Views
625
Replies
10
Views
7K
Replies
8
Views
5K
Replies
4
Views
12K
Replies
28
Views
2K
Replies
3
Views
2K
Replies
2
Views
8K
Top