Potential in the three regions of an infinite slab

workhorse123
Messages
1
Reaction score
0
Homework Statement
The charge density in the region
-z’<z<z’
depends only on z; that is,
p=p’cos(pi z/z’)
where p’ and z’ are constants. Determine the potential in all regions of space
Relevant Equations
Poisons equation, laplace equation
for the boundary conditions for this problem I understand that Electric field and Electric potential will be continuous on the boundaries.
I also know that I can set the reference point for Electric potential, wherever it is convenient. This gives me the fifth boundary condition. I am confused at where I find the last boundary condition.

1700501779671.png
 

Attachments

Last edited by a moderator:
Physics news on Phys.org
Welcome to PF!
If possible, please type in your work using Latex, rather than posting snapshots of your work. Additional guidelines for posting in the homework forums can be found here.

You cannot arbitrarily choose a "zero point" for the electric field like you can with the potential. However, can you justify the condition ##E_{\text{at} \, z = 0} = 0## from the symmetrical nature of the charge distribution in this problem?
 
  • Like
Likes berkeman and workhorse123
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top