Potential in the three regions of an infinite slab

workhorse123
Messages
1
Reaction score
0
Homework Statement
The charge density in the region
-z’<z<z’
depends only on z; that is,
p=p’cos(pi z/z’)
where p’ and z’ are constants. Determine the potential in all regions of space
Relevant Equations
Poisons equation, laplace equation
for the boundary conditions for this problem I understand that Electric field and Electric potential will be continuous on the boundaries.
I also know that I can set the reference point for Electric potential, wherever it is convenient. This gives me the fifth boundary condition. I am confused at where I find the last boundary condition.

1700501779671.png
 

Attachments

Last edited by a moderator:
Physics news on Phys.org
Welcome to PF!
If possible, please type in your work using Latex, rather than posting snapshots of your work. Additional guidelines for posting in the homework forums can be found here.

You cannot arbitrarily choose a "zero point" for the electric field like you can with the potential. However, can you justify the condition ##E_{\text{at} \, z = 0} = 0## from the symmetrical nature of the charge distribution in this problem?
 
  • Like
Likes berkeman and workhorse123
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top