Power developed by a jumping man

  • Thread starter Thread starter geoffrey159
  • Start date Start date
  • Tags Tags
    Power
Click For Summary
SUMMARY

The discussion centers on calculating the power developed by a 160-lb man during a jump, where his center of gravity rises 1.5 ft before reaching a peak height of 3 ft. The power is derived using the formula P = (m/(√2)h1)(g(h2-h1))^(3/2), resulting in an approximate value of 1.42 hp. The conversation highlights the importance of understanding average versus maximum power, with the consensus that maximum power occurs as the man leaves the ground due to the increasing nature of power over time.

PREREQUISITES
  • Understanding of classical mechanics, specifically energy conservation principles
  • Familiarity with power calculations in physics
  • Knowledge of forces and motion, particularly impulse-momentum relationships
  • Basic proficiency in algebra and calculus for solving equations
NEXT STEPS
  • Study the principles of energy conservation in mechanical systems
  • Learn about impulse-momentum relationships and their applications in physics
  • Explore the concept of average versus instantaneous power in mechanics
  • Investigate the effects of varying forces on motion and power output
USEFUL FOR

Physics students, mechanical engineers, and anyone interested in biomechanics or the physics of human movement will benefit from this discussion.

geoffrey159
Messages
535
Reaction score
68

Homework Statement


A 160-lb man leaps into the air from a crouching position. His center of gravity rises 1.5ft before he leaves the ground, and it then rises 3ft to the top of his leap. What power does he develop assuming that he pushes the ground with constant force?

Ans. clue: More than 1hp, less than 10hp

Homework Equations


Power

The Attempt at a Solution


[/B]
I have trouble understanding this problem but made an attempt at a solution.
Call h1 = 1.5ft = 0.46 m, and h2 = 3ft = 0.92m, m = 160 * 0.45 = 72kg

As far as I understand, the power the man develops is the work done on the ground divided by the time his feet are in contact with the ground.
The working forces on the ground are the weight downward, and the ground reaction force upward. Because it is assumed constant, the ground reaction force is conservative and has a potential function which is -N x height.
So the power developped is

## P = \frac{W_g}{\triangle t} = - \frac{\triangle U_g}{\triangle t} = \frac{N-mg}{\triangle t} h_1##

Finding the time interval :
Because all forces are constant, it is easy to find ##\triangle t## with the impulse-momentum relationship:

## (N-mg) \triangle t = m v_{jump} - 0 = m v_{jump}##

The jumping speed is found by using conservation of energy once the man is in the air, and:

##{\triangle t} = \frac{m}{N-mg}\sqrt{2g(h_2-h_1)} ##

Finding the ground force :
Once again, I use conservation of energy, but this time on the ground:
##E_{jump} = E_i = 0 \Rightarrow N = \frac{1}{2h_1}m{v}_{jump}^2 + mg = mg\frac{h_2}{h_1}##All together, the power is :

## P = \frac{m}{\sqrt{2} h_1} (g(h_2-h_1))^{3/2} \approx 1.42 hp##

How ugly is this ?
 
Physics news on Phys.org
geoffrey159 said:
As far as I understand, the power the man develops is the work done on the ground divided by the time his feet are in contact with the ground.
The force is constant, but the speed is not, so power will vary over time.

I don't understand how you calculated the ground force, but the result looks wrong (just an issue with the last step I think).
 
mfb said:
The force is constant, but the speed is not, so power will vary over time.

I don't understand how you calculated the ground force, but the result looks wrong (just an issue with the last step I think).

Hello, thanks for the reply.
I don't really understand the question in the problem: what does it mean to 'develop a power' ?

My first thought was that I had to find the average power during the time the man had its feet on the ground.
Because the forces are conservative, it can be written as a difference of potential energy during that time. The potential energy during that time is ## U(y) = (mg - N) y ##.

How I calculated N :
I used conservation of mechanical energy. At the beginning the man is at crouching position at rest, so ##E_0 = 0##. At height ##h_1##, as his feet leave the ground, ##E_{h_1} = \frac{1}{2} m {v}_{jump}^2 + U(h_1) ##.

But I'm not sure :) What do you think ?
 
geoffrey159 said:
I don't really understand the question in the problem: what does it mean to 'develop a power' ?
Power the human needs to accelerate.
The problem statement does not make clear if average or maximum power is asked for, it is probably safe to give both (once you have one, the other one is not so complicated).

geoffrey159 said:
How I calculated N :
Okay. How did the last "=" sign work? This one:
$$\frac{1}{2h_1}m{v}_{jump}^2 + mg = mg\frac{h_2}{h_1}$$
 
Okay, last part is obtained by replacing ##{v}_{jump}^2 ## by its value, which is given by conservation of mechanical energy between the time the man leaves the ground, and the time he is at the top of his leap. Here, only the weight is working, so ##{v}_{jump}^2 = 2g(h_2-h_1) ##.

Let me think for maximum power ...
 
As far as I understand the problem statement, h2=.92m is the height difference between the point where the man leaves the ground and the highest point of the jump, then you should not subtract h1.
 
yes I was in doubt about that too, I also tried h2 = 4.5 ft which gives an average power of 4.02 hp.
 
I think maximum power occurs as the man leaves the ground because power is a strictly increasing function relative to time:

## \frac{dP}{dt} = (N-mg) \frac{dv}{dt} = \frac{(N-mg)^2}{m} > 0 ##

So ## P_{max} = (N-mg) v_{jump} = (N-mg) \sqrt{2g(h_2 - h_1)} ##
 
geoffrey159 said:
I think maximum power occurs as the man leaves the ground because power is a strictly increasing function relative to time:
Right.
I don't see why you subtract mg from the force, it is still a force the legs have to exert.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 10 ·
Replies
10
Views
7K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 8 ·
Replies
8
Views
4K