Power factor of a retrofitted LED unit in a fluorescent fitting

Click For Summary
SUMMARY

The discussion centers on the power factor and actual power consumption of retrofitted LED tubes in fluorescent fittings. A user reported that their 24W LED tubes were consuming 80W as measured by a clamp meter, raising concerns about the accuracy of power factor calculations. The conversation highlighted the impact of leaving the original ballast and capacitor in the circuit, which can lead to higher apparent power readings. It was concluded that removing these components could reduce reactive current and potentially lower energy costs, although the effort may not be justified given the current tariff structure.

PREREQUISITES
  • Understanding of power factor (PF) and its implications in electrical systems
  • Familiarity with clamp meter measurements and their interpretation
  • Knowledge of LED tube specifications and retrofitting practices
  • Basic concepts of reactive and real power in AC circuits
NEXT STEPS
  • Research the effects of ballast types on LED tube performance
  • Learn about power factor correction techniques for LED installations
  • Investigate the differences between apparent power (VA) and real power (W) in electrical systems
  • Explore the implications of domestic three-phase tariffs on energy consumption
USEFUL FOR

Electrical engineers, energy efficiency consultants, and anyone involved in retrofitting lighting systems, particularly those transitioning from fluorescent to LED technology.

Guineafowl
Messages
876
Reaction score
409
TL;DR
How does leaving the ballast and capacitor in circuit affect power factor of LED lights?
A poster on another forum has fitted a large number of 230V 50Hz 24W nominal LED tubes, apparently designed to be plugged straight into the old fluorescent fittings.

He has found, by clamp meter measurement, that the new LED lights appear to be consuming 80W, not the claimed 24W.

A number of us pointed out the difference between apparent power as measured by the clamp meter, and real power as charged by the power company, and the possible effects of leaving the ballast and capacitor in circuit.

An engineer from the supplier has visited, and merely measured the consumption by clamp meter again. I would be very interested in the input from members on here.

May I link the thread here?: https://www.mig-welding.co.uk/forum...florescent-led-replacement-efficiency.128634/

edit: I should add that this class of LED tube must have a minimum power factor of 0.5. In my scribblings, I have (for now) modelled them as 24W resistive loads. It might be more meaningful to assume a 0.5 (leading?) PF and calculate the complex impedance of the tubes as such.
 
Last edited:
Engineering news on Phys.org
The inductors were there to keep current flowing through the tubes for a greater angle, not just at the peak of the voltage cycle.
The capacitor was there to neutralise the inductance, to partly restore the PF.

The clamp current being measured now is the reactive capacitor current. That will be of the same magnitude as the original tube current through the inductor. That explains why the clamp current shows the VA of the original tubes. Depending on the type of metering used and tariff, they may actually be paying for the reactive current.

Removing both the inductor and the capacitor will reduce the reactive current, and the circulating energy. It will minimise the bill for lighting, by an unknown amount, depending on the metering.
 
  • Like
Likes   Reactions: Windadct and Guineafowl
Thanks. The OP is, I believe, on a domestic three phase tariff, meaning only real power is charged. This may change in the future.

The height of the ceiling means that removing the inductors/caps would be a significant upheaval. Given that the ‘extra’ current is not being charged for, it looks like the job would not be worth it.

May I quote, or at least link to your post?
 
Guineafowl said:
May I quote, or at least link to your post?
Feel free.
 
I have a magnifier/desk lamp at my work station with an 8 inch Circ-line LED lamp in it. The LED lamp is a plug-in replacement for the original fluorescent tube, the ballast is still in the circuit.

I plugged it in to a KIL A WATT meter and here are the numbers with the LED:
V = 118.5
A = 0.42
W = 32.1
VA= 49.8
PF= 0.64

If I did the math right, that shows a phase angle of 50°.

Cheers,
Tom
 
Tom.G said:
I have a magnifier/desk lamp at my work station with an 8 inch Circ-line LED lamp in it. The LED lamp is a plug-in replacement for the original fluorescent tube, the ballast is still in the circuit.

I plugged it in to a KIL A WATT meter and here are the numbers with the LED:
V = 118.5
A = 0.42
W = 32.1
VA= 49.8
PF= 0.64

If I did the math right, that shows a phase angle of 50°.

Cheers,
Tom
Would that be an electronic ballast?
 
Guineafowl said:
Would that be an electronic ballast?
I haven't taken it apart, but:
It used a conventional starter for the original lamp.
The housing size where the ballast seems to be is 3 x 3.5 x 2.5 inches in size.
It is about 12 to 15 years old.

I vote for a magnetic (transformer) ballast.
 
Tom.G said:
I haven't taken it apart, but:
It used a conventional starter for the original lamp.
The housing size where the ballast seems to be is 3 x 3.5 x 2.5 inches in size.
It is about 12 to 15 years old.

I vote for a magnetic (transformer) ballast.
…and when can we expect the stripdown and analysis? :wink:
 
'Fraid not, the steel case, presumably with the ballast, is crimped together.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
5
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K