Power Radiated From a Copper Cube

AI Thread Summary
The discussion revolves around calculating the power radiated from a copper cube using the Stefan-Boltzmann law. The initial calculations, using an emissivity of 1, a surface area based on a 1 cm edge length, and a temperature of 340°C, yield a radiated power of approximately 4.8 W. However, the provided answer key states the correct answer is 19 W, which corresponds to a cube with a 2 cm edge length. Participants suggest verifying the problem parameters with the instructor, as the initial calculations appear accurate for the given dimensions. The discrepancy highlights the importance of confirming problem details in physics assignments.
Randomized10
Messages
3
Reaction score
0
Homework Statement
What power is radiated from a 340°C copper cube 1.0cm on a side? Assume an emissivity of 1

A. 0.76 W
B. 1.8 W
C. 3.4 W
D. 8.0 W
E. 19 W
Relevant Equations
$$\frac{dQ}{dt}=e\sigma AT^4$$
##e## is emissivity
##\sigma## is the Stefan-Boltzmann constant, ##5.67*10^{-8} W m^{-2} K^{-4}##
A is the surface area
T is the temperature
##\frac{dQ}{dt}## is the rate of heat transfer or radiated power

At first glance this appeared to be an easy problem, just plug in the values and go, so that's what I did. ##e=1##, ##\sigma=5.67*10^{-8} Wm^{-2}K^{-4}##, ##A=6*(1cm)^2=6*(0.01m)^2=6*0.0001m^2=0.0006m^2=6*10^{-4}m^2##, and ##T=340^{\circ}C=613.15K##. After plugging in the values I got ##\frac{dQ}{dt}=1*5.67*10^{-8}*6*10^{-4}*613.15^4=3.402*10^{-11}*1.4134*10^{11}=4.808W##, but that isn't one of the possible answers no matter how you round it. The answer key says that the correct answer is 19 W, but I don't know how to get there. I tried working out the math using Celsius instead of Kelvin, and got ##\frac{dQ}{dt}=0.4546W##, which isn't right either. Any insights as to what I'm doing wrong would be appreciated.
 
Physics news on Phys.org
My calculation agrees with yours. This is not the first time that the correct solution does not match any of the offered answers. I suggest that you show your answer to the person who assigned you this problem because he/she/ze/they needs to know.
 
  • Like
Likes Randomized10
I agree with @kuruman. Your answer of 4.8 W looks correct. The answer of 19 W corresponds to an edge length of 2.0 cm.
 
  • Like
Likes Randomized10
Ok, I'll talk to the professor. Thank you!
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top