Power Radiated From a Copper Cube

AI Thread Summary
The discussion revolves around calculating the power radiated from a copper cube using the Stefan-Boltzmann law. The initial calculations, using an emissivity of 1, a surface area based on a 1 cm edge length, and a temperature of 340°C, yield a radiated power of approximately 4.8 W. However, the provided answer key states the correct answer is 19 W, which corresponds to a cube with a 2 cm edge length. Participants suggest verifying the problem parameters with the instructor, as the initial calculations appear accurate for the given dimensions. The discrepancy highlights the importance of confirming problem details in physics assignments.
Randomized10
Messages
3
Reaction score
0
Homework Statement
What power is radiated from a 340°C copper cube 1.0cm on a side? Assume an emissivity of 1

A. 0.76 W
B. 1.8 W
C. 3.4 W
D. 8.0 W
E. 19 W
Relevant Equations
$$\frac{dQ}{dt}=e\sigma AT^4$$
##e## is emissivity
##\sigma## is the Stefan-Boltzmann constant, ##5.67*10^{-8} W m^{-2} K^{-4}##
A is the surface area
T is the temperature
##\frac{dQ}{dt}## is the rate of heat transfer or radiated power

At first glance this appeared to be an easy problem, just plug in the values and go, so that's what I did. ##e=1##, ##\sigma=5.67*10^{-8} Wm^{-2}K^{-4}##, ##A=6*(1cm)^2=6*(0.01m)^2=6*0.0001m^2=0.0006m^2=6*10^{-4}m^2##, and ##T=340^{\circ}C=613.15K##. After plugging in the values I got ##\frac{dQ}{dt}=1*5.67*10^{-8}*6*10^{-4}*613.15^4=3.402*10^{-11}*1.4134*10^{11}=4.808W##, but that isn't one of the possible answers no matter how you round it. The answer key says that the correct answer is 19 W, but I don't know how to get there. I tried working out the math using Celsius instead of Kelvin, and got ##\frac{dQ}{dt}=0.4546W##, which isn't right either. Any insights as to what I'm doing wrong would be appreciated.
 
Physics news on Phys.org
My calculation agrees with yours. This is not the first time that the correct solution does not match any of the offered answers. I suggest that you show your answer to the person who assigned you this problem because he/she/ze/they needs to know.
 
  • Like
Likes Randomized10
I agree with @kuruman. Your answer of 4.8 W looks correct. The answer of 19 W corresponds to an edge length of 2.0 cm.
 
  • Like
Likes Randomized10
Ok, I'll talk to the professor. Thank you!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top