MHB Can You Name 9 Important Precalculus Topics for a Strong Foundation in Calculus?

AI Thread Summary
Key precalculus topics essential for a strong foundation in calculus include a strong grasp of algebra, particularly the ability to complete the square and plot lines on a Cartesian coordinate system. Geometry and analytic geometry are crucial for understanding spatial relationships and functions. Trigonometry is emphasized for its importance in manipulation and memorization, including polar coordinates. Additionally, familiarity with matrices, linear algebra, and discrete mathematics can enhance problem-solving skills. Mastering these topics allows students to focus on calculus concepts rather than revisiting prerequisites.
mathdad
Messages
1,280
Reaction score
0
If you were to make a list of 10 important precalculus topics that students should know very well, what would they be?
Let me start by saying word problems. All students going into Calculus 1 should be able to answer Algebra 1 and 2 applications. Can you name 9 other important precalculus topics? I would like to have a list of 10, if possible.
 
Mathematics news on Phys.org
RTCNTC said:
If you were to make a list of 10 important precalculus topics that students should know very well, what would they be?
Let me start by saying word problems. All students going into Calculus 1 should be able to answer Algebra 1 and 2 applications. Can you name 9 other important precalculus topics? I would like to have a list of 10, if possible.

Algebra, Algebra, and more Algebra - including Theory of Algebra and so-called "College Algebra". If you can't Complete the Square to derive the Quadratic Formula, you haven't done nearly enough. If you can't QUICKLY plot a line on a Cartesian Coordinate system or write the equation of a line in four or five different ways, practice some more.

Geometry - Constructions, Theorems. Nothing better for knowing what makes sense and what doesn't. This WILL organize your brain.

Analytic Geometry, but not just Conic Sections. Throw in Rational Functions (They may be part of "College Algebra", I suppose.) Functions in general. Two-dimensional spatial orientation will save you.

Trigonometry - More than you think. Memorize. Manipulate. Get a good handle on it. Don't forget Polar Coordinates!

To a lesser extent - Matrices and Linear Algebra. This will help you foresee some things that will be important and cause you to wonder about systems, rather than just individual functions.

To a lesser extent - A broad classification of "Discrete Mathematics" and "Finite Mathematics". This can be an odd collection of things. There is more going on, here, than you might think.

To a lesser extent - Static Physics. Some general idea of some of the applications of the calculus will serve you well. This will help you appreciate calculus-based physics.

To a lesser extent - Financial Mathematics, Theory of Interest. If nothing else, this should warm you up to Geometric Series. This will also prep you for early applications of differential equations. This will also force you to be more organized.

To a lesser extent - Number Theory. If nothing else, like Geometry, this will make you use your brain in a way with which you may not be accustomed. it will broaden your horizons.

Sorry, only made it to 9, but my classifications were not all that distinct. Some are downright muddled. Anyway, if you nail down these things - make them second nature - you can spend your time on the calculus, rather than on reviewing what should have been listed as prerequisite.
 
tkhunny said:
Algebra, Algebra, and more Algebra - including Theory of Algebra and so-called "College Algebra". If you can't Complete the Square to derive the Quadratic Formula, you haven't done nearly enough. If you can't QUICKLY plot a line on a Cartesian Coordinate system or write the equation of a line in four or five different ways, practice some more.

Geometry - Constructions, Theorems. Nothing better for knowing what makes sense and what doesn't. This WILL organize your brain.

Analytic Geometry, but not just Conic Sections. Throw in Rational Functions (They may be part of "College Algebra", I suppose.) Functions in general. Two-dimensional spatial orientation will save you.

Trigonometry - More than you think. Memorize. Manipulate. Get a good handle on it. Don't forget Polar Coordinates!

To a lesser extent - Matrices and Linear Algebra. This will help you foresee some things that will be important and cause you to wonder about systems, rather than just individual functions.

To a lesser extent - A broad classification of "Discrete Mathematics" and "Finite Mathematics". This can be an odd collection of things. There is more going on, here, than you might think.

To a lesser extent - Static Physics. Some general idea of some of the applications of the calculus will serve you well. This will help you appreciate calculus-based physics.

To a lesser extent - Financial Mathematics, Theory of Interest. If nothing else, this should warm you up to Geometric Series. This will also prep you for early applications of differential equations. This will also force you to be more organized.

To a lesser extent - Number Theory. If nothing else, like Geometry, this will make you use your brain in a way with which you may not be accustomed. it will broaden your horizons.

Sorry, only made it to 9, but my classifications were not all that distinct. Some are downright muddled. Anyway, if you nail down these things - make them second nature - you can spend your time on the calculus, rather than on reviewing what should have been listed as prerequisite.

Good and informative reply.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
2
Views
3K
Replies
8
Views
2K
Replies
2
Views
2K
Replies
1
Views
3K
Replies
9
Views
2K
Replies
6
Views
3K
Back
Top