I Prefactor in Canonical Quantization of Scalar Field

thatboi
Messages
130
Reaction score
20
Hey all,
I am encountering an issue reconciling the choice of prefactors in the canonical quantization of the scalar field between Srednicki and Peskin's books. In Peskin's book (see equation (2.47)), there is a prefactor of ##\frac{1}{\sqrt{2E_{p}}}## whereas in Srednicki's book (see equation (3.18) and (3.19)), there is a prefactor of ##\frac{1}{2\omega}##. What concerns me is that if we take the derivative with respect to time of the field, then in Peskin's case, we are left with a ##\sqrt{E_{p}}## factor whereas in Srednicki's book, the ##\frac{1}{\omega}## prefactor completely disappears, so I fail to see how these 2 definitions can be equivalent.
Thanks.
 
Physics news on Phys.org
Compare also the commutators of creation/destruction operators, they should be different too, so that at the end the commutators between the field and its time derivative are the same.
 
  • Like
Likes topsquark, thatboi and malawi_glenn
Yes, different books uses different normalizations for the ##\hat a## and ##\hat a^\dagger##
 
  • Like
Likes topsquark, vanhees71, thatboi and 1 other person
Great, thanks a lot. My confusion initially came from when I was looking through Itzykson's QFT book and came upon this discussion on pg. 521:
1679847504828.png

Specifically, looking at how the scalar field is quantized in equation (11.39), it seems to me that if we used Peskin's definition of normalization, then the energy term wouldn't cancel out after we take the derivative with respect to time and thus we couldn't evaluate the integral in equation (11.41) right (since the energy term is also necessarily a function of the spatial coordinates of momentum).
 
It depends, at which place you want to have it convenient. If you want the creation and annihilation operators to create momentum eigenstates normalized to 1, you need the ##1/\sqrt{2 E_{\vec{p}}}## factors in the mode decomposition. If you want manifestly covariant integrals in the mode decomposition you need the ##1/(2 E_{\vec{p}})## factors. That's because ##\mathrm{d}^2 p/(2 E_{\vec{p}})## is mainfestly Lorentz invariant.

The correct factor of the field is of course always uniquely defined by the equal-time (anti-)commutator relations,
$$[\hat{\Phi}(t,\vec{x}),\hat{\Pi}(t,\vec{y})]=\mathrm{i} \delta^{(3)}(\vec{x}-\vec{y}).$$
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top