I've been doing a little work with Borel measures and don't want to confuse Borel measurable functions with Lebesgue measurable functions for R^n -> R^m.(adsbygoogle = window.adsbygoogle || []).push({});

I'm, of course, familiar with the definition that a function f:R->R is Lebesgue measurable if the preimage of intervals/open sets/closed sets/Borel sets is Lebesgue measurable.

We also say a function between general measurable X, Y spaces is measurable if the preimage of a set in the sigma algebra corresponding to Y is in the sigma algebra corresponding to X.

For a Lebesgue measurable function f:R->R is it necessarily true that the preimage of a Lebesgue measurable set is Lebesgue measurable? I don't see that this need necessarily be the case.

Am I correct in thinking that a Lebesgue measurable function f:R->R is a measurable function from R with the Lebesgue sigma algebra to R with the Borel sigma algebra (and NOT the Lebesgue sigma algebra)?

I'd be very grateful if anyone could clear up my confusion.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Preimage of a Lebesgue measurable set under a Lebesgue measurable function.

**Physics Forums | Science Articles, Homework Help, Discussion**