MHB Prime elements in integral domains

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
In Dummit and Foote, Section 8.3 on Unique Factorization Domains, Proposition 10 reads as follows:

Proposition 10: In an integral domain a prime element is always irreducible.

The proof reads as follows:

===========================================================

Suppose (p) is a non-zero prime ideal and p = ab.

Then ab = p \in (p), so by definition of prime ideal, one of a or b, say a, is in (p).

Thus a = pr for some r.

This implies p = ab = prb and so rb = 1 and b is a unit.

This shows that p is irreducible.

==============================================================

My question is as follows: Where in this proof do D&F use the fact that p is in an integral domain? (It almost reads as if this applies for any ring)

Peter
 
Physics news on Phys.org
In this step:
Peter said:
This implies p = ab = prb and so rb = 1 and b is a unit.

Since an integral domain has no zero divisors by definition there's a cancelation law which says:
Let R be an integral domain and a,b,c \in R. If a \neq 0 and ab=ac then b=c.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 31 ·
2
Replies
31
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 20 ·
Replies
20
Views
5K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 84 ·
3
Replies
84
Views
10K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K