MHB Prime elements in integral domains

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
In Dummit and Foote, Section 8.3 on Unique Factorization Domains, Proposition 10 reads as follows:

Proposition 10: In an integral domain a prime element is always irreducible.

The proof reads as follows:

===========================================================

Suppose (p) is a non-zero prime ideal and p = ab.

Then ab = p \in (p), so by definition of prime ideal, one of a or b, say a, is in (p).

Thus a = pr for some r.

This implies p = ab = prb and so rb = 1 and b is a unit.

This shows that p is irreducible.

==============================================================

My question is as follows: Where in this proof do D&F use the fact that p is in an integral domain? (It almost reads as if this applies for any ring)

Peter
 
Physics news on Phys.org
In this step:
Peter said:
This implies p = ab = prb and so rb = 1 and b is a unit.

Since an integral domain has no zero divisors by definition there's a cancelation law which says:
Let R be an integral domain and a,b,c \in R. If a \neq 0 and ab=ac then b=c.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top