MHB Prime elements in integral domains

Click For Summary
In the discussion on prime elements in integral domains, the focus is on Proposition 10 from Dummit and Foote, which states that a prime element is always irreducible in an integral domain. The proof demonstrates that if a prime element p can be expressed as a product ab, then one of the factors must be a unit, confirming its irreducibility. A key point raised is the necessity of the integral domain's property of having no zero divisors, which allows for the cancellation law to apply in the proof. This cancellation law is crucial for concluding that if p = ab, then b must be a unit, reinforcing the definition of irreducibility. The discussion emphasizes the importance of the integral domain structure in validating the proof's logic.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
In Dummit and Foote, Section 8.3 on Unique Factorization Domains, Proposition 10 reads as follows:

Proposition 10: In an integral domain a prime element is always irreducible.

The proof reads as follows:

===========================================================

Suppose (p) is a non-zero prime ideal and p = ab.

Then ab = p \in (p), so by definition of prime ideal, one of a or b, say a, is in (p).

Thus a = pr for some r.

This implies p = ab = prb and so rb = 1 and b is a unit.

This shows that p is irreducible.

==============================================================

My question is as follows: Where in this proof do D&F use the fact that p is in an integral domain? (It almost reads as if this applies for any ring)

Peter
 
Physics news on Phys.org
In this step:
Peter said:
This implies p = ab = prb and so rb = 1 and b is a unit.

Since an integral domain has no zero divisors by definition there's a cancelation law which says:
Let R be an integral domain and a,b,c \in R. If a \neq 0 and ab=ac then b=c.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 31 ·
2
Replies
31
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 20 ·
Replies
20
Views
5K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 84 ·
3
Replies
84
Views
11K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K