What is the proof for cos(2pi/n) + isin(2pi/n) being a primitive root of unity?

Click For Summary
The discussion centers on proving that cos(2π/n) + i sin(2π/n) is a primitive root of unity, which means it cannot equal 1 when raised to any power k where 1 ≤ k < n. Participants explore using De Moivre's theorem to express z^k as e^(i2πk/n) and discuss the conditions under which this expression cannot equal 1. The key point is establishing that 2kπ/n cannot equal 2mπ for any integer m, which would imply that k must be less than n. Misunderstandings about trigonometric values, particularly cos(π), are clarified, leading to the conclusion that the proof is ultimately validated. The conversation highlights the importance of correctly applying mathematical principles to establish the properties of roots of unity.
Driessen12
Messages
18
Reaction score
0

Homework Statement


I must show that cos(2pi/n) + isin(2pi/n) is a primitive root of unity


Homework Equations


a primitive root of unity is an nth root of unity that does not equal 1 when raised to the kth power for k less than n and great than or equal to 1


The Attempt at a Solution


If we set z = cos(2pi/n) + isin(2pi/n) then z^k cannot equal 1. we can use de moivres theorem to make z^k = cos(2kpi/n) + isin(2kpi/n) and then I'm not certain what fact to use next
 
Physics news on Phys.org
how about writing it as
cos(\frac{2 \pi}{n}} ) + i sin(\frac{2 \pi}{n}} ) = e^{\frac{2 \pi}{n}}
 
so then e^(2kpi/n) would be what i get. From there all i would need to show is that 2kpi/n cannot be zero, correct?
 
lanedance said:
how about writing it as
cos(\frac{2 \pi}{n}} ) + i sin(\frac{2 \pi}{n}} ) = e^{\frac{2 \pi}{n}}

But that's not true. You're off by a factor of i in the exponential.
 
right, but to prove that z^k is not equal to zero i would have e^(i2πk/n) and this cannot equal 1 if we restrict k to be greater than or equal to 1 and less than n. So n cannot be zero and k cannot be zero, so i2(pi)k/n cannot be zero, thus z^k cannot equal 1 and is therefore primitive. and k is not equal to n so we can never have e^(i2(pi)). but how would i prove that the exponent can never be pi
 
Last edited:
yeah cheers mis-typed the i

well its a given that k<n, so k/n < 1, so (k/n)2.pi <2.pi, isn't that enough
 
Last edited:
no because sin(pi) is also zero and cos(pi) is 1 giving us 1 which is exactly what I have to prove cannot happen. For example choose k to be 2 and n to be 4, then we have e^(i(pi)) which is 1. I am not sure how to prove that this cannot happen though. I need to show that it is impossible to have any multiple of pi as my argument. any ideas?
 
Driessen12 said:
no because sin(pi) is also zero and cos(pi) is 1 giving us 1 which is exactly what I have to prove cannot happen. For example choose k to be 2 and n to be 4, then we have e^(i(pi)) which is 1. I am not sure how to prove that this cannot happen though. I need to show that it is impossible to have any multiple of pi as my argument. any ideas?

You're doing something wrong if you think that cos(pi)=1. cos(pi)=-1.
 
I wasn't thinking of course, you're right. I have it all proved now
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 22 ·
Replies
22
Views
909
  • · Replies 7 ·
Replies
7
Views
19K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 9 ·
Replies
9
Views
4K
Replies
4
Views
2K
Replies
14
Views
17K