Probability density for observable with continuous Spectrum

Click For Summary
To find the probability density for an electron's kinetic energy in the interval [E, E+dE], the wave function must be analyzed using the kinetic energy operator p^2/2m. The Born rule can be applied, but challenges arise due to the infinite dimensional Hilbert space and the degeneracy of the kinetic energy operator's eigenstates. A suggested approach is to calculate the momentum space wave function, denoted as ψ(p), to facilitate the probability density determination. This method may help in overcoming the difficulties associated with the continuous spectrum of kinetic energy. Understanding these concepts is crucial for accurate probability calculations in quantum mechanics.
Naarogaut
Messages
1
Reaction score
0
Misplaced Homework Thread
I'm given a wave function for an electron which is given as:
1684834653817.png

For an electron in this state the kinetic energy is being measured, where the kinetic energy operator is p^2/2m. How can I find the probability (density) that an electron is found to have kinetic energy in the interval [E, E+dE]? I was thinking about using the born rule, but I am struggeling to use it for the infinite dimensional Hilbert space, since the eigenstates of the kinetic energy operator degenerate as far as I can tell...
 
Physics news on Phys.org
How about calculating ##\psi(p)##?
 
So is there some elegant way to do this or am I just supposed to follow my nose and sub the Taylor expansions for terms in the two boost matrices under the assumption ##v,w\ll 1##, then do three ugly matrix multiplications and get some horrifying kludge for ##R## and show that the product of ##R## and its transpose is the identity matrix with det(R)=1? Without loss of generality I made ##\mathbf{v}## point along the x-axis and since ##\mathbf{v}\cdot\mathbf{w} = 0## I set ##w_1 = 0## to...

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K