Probability density for observable with continuous Spectrum

Naarogaut
Messages
1
Reaction score
0
Misplaced Homework Thread
I'm given a wave function for an electron which is given as:
1684834653817.png

For an electron in this state the kinetic energy is being measured, where the kinetic energy operator is p^2/2m. How can I find the probability (density) that an electron is found to have kinetic energy in the interval [E, E+dE]? I was thinking about using the born rule, but I am struggeling to use it for the infinite dimensional Hilbert space, since the eigenstates of the kinetic energy operator degenerate as far as I can tell...
 
Physics news on Phys.org
How about calculating ##\psi(p)##?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top