Probability Homework Question 2

  • Context: MHB 
  • Thread starter Thread starter pinky14
  • Start date Start date
  • Tags Tags
    Homework Probability
Click For Summary
SUMMARY

The discussion focuses on minimizing the variance of the random variable W, defined as W = αX + (1 - α)Y, where X and Y are uncorrelated random variables with equal means (μ) but differing variances (σ²X > σ²Y). The variance of W is expressed as σ²W = α²σ²X + (1 - α)²σ²Y, and since X and Y are uncorrelated, their covariance is zero. The goal is to determine the optimal value of α in the interval [0, 1] that minimizes this variance, which involves finding the minimum of the quadratic function f(α) = α²σ²X + (1 - α)²σ²Y.

PREREQUISITES
  • Understanding of uncorrelated random variables
  • Knowledge of variance and covariance concepts
  • Familiarity with quadratic functions and their minimization
  • Basic probability theory
NEXT STEPS
  • Learn how to derive the minimum of a quadratic function
  • Study the properties of uncorrelated random variables and their implications
  • Explore the concept of linear combinations of random variables
  • Investigate the role of covariance in statistical analysis
USEFUL FOR

Students and professionals in statistics, data analysis, and probability theory, particularly those looking to deepen their understanding of variance minimization in the context of uncorrelated random variables.

pinky14
Messages
5
Reaction score
0
Suppose that X, Y are uncorrelated random variables which are each measurements of some unknown quantity $\mu$. Both random variables have $\mu_{X} = \mu_{Y} = \mu$, but $\sigma^2_{X} > \sigma^2_{Y}$. Determine the value of $\alpha$ in [0, 1] which will minimize the variance of the random variable W = $\alpha X +(1 - \alpha)$Y. Note that E(W) = $\mu$ for any $\alpha$ so the minimal variance α gives the “best” linear combination of X, Y to use in estimating $\mu$.
 
Physics news on Phys.org
Hi pinky14,

In the future, please show your thoughts or what you've tried.

Show that $\sigma_W^2 = \alpha^2 \sigma_X^2 + (1 - \alpha)^2\sigma_Y^2 + 2\alpha(1 - \alpha)\operatorname{Cov}(X,Y)$. Since $X$ and $Y$ are uncorrelated, what can you say about $\operatorname{Cov}(X,Y)$?
 
Euge said:
Hi pinky14,

In the future, please show your thoughts or what you've tried.

Show that $\sigma_W^2 = \alpha^2 \sigma_X^2 + (1 - \alpha)^2\sigma_Y^2 + 2\alpha(1 - \alpha)\operatorname{Cov}(X,Y)$. Since $X$ and $Y$ are uncorrelated, what can you say about $\operatorname{Cov}(X,Y)$?

So for 2 random variables to be "uncorrelated," their covariance has to be 0? (E(XY)-E(X)E(Y))? I wasn't really sure how to start with this problem. The problem says their means are equal but that the variance of X is larger than Y but I am not sure what to do with the equation for W that they give. When they say to minimize, do we take the derivative? I am pretty lost in my probability class.
 
pinky14 said:
So for 2 random variables to be "uncorrelated," their covariance has to be 0?

That's correct. So then $\sigma_W^2 = \alpha^2 \sigma_X^2 + (1 - \alpha)^2 \sigma_Y^2$. You will need to find $\alpha\in [0,1]$ that minimizes the quadratic function $f(\alpha) := \alpha^2 \sigma_X^2 + (1 - \alpha)^2 \sigma_Y^2$.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K