MHB Probability Homework Question 2

AI Thread Summary
To minimize the variance of the random variable W = αX + (1 - α)Y, where X and Y are uncorrelated random variables with equal means but different variances, the covariance between them is zero. The variance of W can be expressed as σ_W^2 = α^2 σ_X^2 + (1 - α)^2 σ_Y^2. To find the optimal value of α that minimizes this variance, one must analyze the quadratic function f(α) = α^2 σ_X^2 + (1 - α)^2 σ_Y^2. The solution involves taking the derivative of this function and solving for α within the interval [0, 1]. Understanding these concepts is crucial for effectively estimating the unknown quantity μ using the best linear combination of X and Y.
pinky14
Messages
5
Reaction score
0
Suppose that X, Y are uncorrelated random variables which are each measurements of some unknown quantity $\mu$. Both random variables have $\mu_{X} = \mu_{Y} = \mu$, but $\sigma^2_{X} > \sigma^2_{Y}$. Determine the value of $\alpha$ in [0, 1] which will minimize the variance of the random variable W = $\alpha X +(1 - \alpha)$Y. Note that E(W) = $\mu$ for any $\alpha$ so the minimal variance α gives the “best” linear combination of X, Y to use in estimating $\mu$.
 
Physics news on Phys.org
Hi pinky14,

In the future, please show your thoughts or what you've tried.

Show that $\sigma_W^2 = \alpha^2 \sigma_X^2 + (1 - \alpha)^2\sigma_Y^2 + 2\alpha(1 - \alpha)\operatorname{Cov}(X,Y)$. Since $X$ and $Y$ are uncorrelated, what can you say about $\operatorname{Cov}(X,Y)$?
 
Euge said:
Hi pinky14,

In the future, please show your thoughts or what you've tried.

Show that $\sigma_W^2 = \alpha^2 \sigma_X^2 + (1 - \alpha)^2\sigma_Y^2 + 2\alpha(1 - \alpha)\operatorname{Cov}(X,Y)$. Since $X$ and $Y$ are uncorrelated, what can you say about $\operatorname{Cov}(X,Y)$?

So for 2 random variables to be "uncorrelated," their covariance has to be 0? (E(XY)-E(X)E(Y))? I wasn't really sure how to start with this problem. The problem says their means are equal but that the variance of X is larger than Y but I am not sure what to do with the equation for W that they give. When they say to minimize, do we take the derivative? I am pretty lost in my probability class.
 
pinky14 said:
So for 2 random variables to be "uncorrelated," their covariance has to be 0?

That's correct. So then $\sigma_W^2 = \alpha^2 \sigma_X^2 + (1 - \alpha)^2 \sigma_Y^2$. You will need to find $\alpha\in [0,1]$ that minimizes the quadratic function $f(\alpha) := \alpha^2 \sigma_X^2 + (1 - \alpha)^2 \sigma_Y^2$.
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...

Similar threads

Back
Top