B Probability of firing exactly one shot in each annular zone

  • Thread starter Thread starter WMDhamnekar
  • Start date Start date
  • Tags Tags
    Probability
Click For Summary
The discussion revolves around calculating the probability of firing exactly one shot in each of three concentric zones of a circular target. Initial calculations suggest that the probability for one specific arrangement of shots is 5/432. However, since there are multiple permutations of how the shots can land in the different zones, the total probability is adjusted by multiplying by 3! (the number of permutations), resulting in 5/72. The key point is recognizing that the initial calculation only accounts for one specific arrangement, while the correct answer considers all possible arrangements. This highlights the importance of accounting for permutations in probability calculations.
WMDhamnekar
MHB
Messages
376
Reaction score
28
TL;DR
Suppose a circular target is divided into three zones bounded by concentric circles of radius 1/3, 1/2, and 1, as illustrated in the following diagram.
If three shots are fired at random at the target, what is the probability that exactly one shot lands in each zone?
1664778873790.png

My attempt to answer this question: With the radii in the ratio ## 1: \frac12: \frac13 ##, the area of the corresponding circles will be in the ratio of ##1: \frac14: \frac19 ##. The areas of the three rings will be in the ratio of ## \frac34 : \frac{5}{36}: \frac19 ##
So, if three shots are fired at random at the target, the probability that exactly one shots lands in each zone is equal to ## \frac34 \times \frac{5}{36} \times \frac19 = \frac{5}{432}## But author said the answer is ##\frac{5}{432}\times 3! = \frac{5}{72}## How is that?

Would any member of physics forum provide me a satisfactory explanation?
 
Physics news on Phys.org
WMDhamnekar said:
Summary: Suppose a circular target is divided into three zones bounded by concentric circles of radius 1/3, 1/2, and 1, as illustrated in the following diagram.
If three shots are fired at random at the target, what is the probability that exactly one shot lands in each zone?

View attachment 314939
My attempt to answer this question: With the radii in the ratio ## 1: \frac12: \frac13 ##, the area of the corresponding circles will be in the ratio of ##1: \frac14: \frac19 ##. The areas of the three rings will be in the ratio of ## \frac34 : \frac{5}{36}: \frac19 ##
So, if three shots are fired at random at the target, the probability that exactly one shots lands in each zone is equal to ## \frac34 \times \frac{5}{36} \times \frac19 = \frac{5}{432}## But author said the answer is ##\frac{5}{432}\times 3! = \frac{5}{72}## How is that?

Would any member of physics forum provide me a satisfactory explanation?
You've calculated the probability that the first shot lands in the outer area, the second lands in the middle area and the third lands in the inner area. That is not the only way you can have one in each area.
 
  • Like
  • Wow
Likes Dale and WMDhamnekar
PeroK said:
You've calculated the probability that the first shot lands in the outer area, the second lands in the middle area and the third lands in the inner area. That is not the only way you can have one in each area.
Using above comment, there are 6 possible permutations, giving the correct answer. Assuming no misses.
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
4
Views
2K
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 125 ·
5
Replies
125
Views
19K
  • · Replies 67 ·
3
Replies
67
Views
15K
  • · Replies 175 ·
6
Replies
175
Views
26K
  • · Replies 109 ·
4
Replies
109
Views
64K