Probability of Negative Value in Sz 1/2 Spin System w/ Lambda 1 & 2

ellenb899
Messages
18
Reaction score
0
Homework Statement
Will the probability to provide a negative value of a Sz 1/2 spin system always be 0? If lambda 1 = hbar/2 and lambda 2 = -h bar/2 ?
Relevant Equations
P1(Sz = hbar/2) = |c1|^2
Will the probability to provide a negative value of a Sz 1/2 spin system always be 0? If lambda 1 = hbar/2 and lambda 2 = -h bar/2 ?
 
Physics news on Phys.org
The question is not clear. Can you post the full statement?

Also, PhysicsForums requires you to provide an attempt at a solution.
 
Given particle in spin state: wavefunction in bra-ket notation = 3N|1> + i4N|2> (1/2 spin state in z axis)

Q. What is the probability that a measurement of Sz will provide negative value?

My attempt at solution is using the equation I provided, a negative value cannot be obtained as it must be squared. Is this correct?
 
Probabilities are always positive or zero, but it has nothing to do with the sign of what will be measured.

In other words, the question asks for the probability of measuring the spin as spin-down.

ellenbaker said:
Given particle in spin state: wavefunction in bra-ket notation = 3N|1> + i4N|2> (1/2 spin state in z axis)
I don't understand what the states ##\ket{1}## and ##\ket{2}## correspond to.

I guess you will also have to figure out what the value of ##N## is.
 
For a spin 1/2 the eigenvalues of ##\sigma_z## are ##\pm \hbar/2##. A general state is
$$|\psi \rangle = a |\hbar/2 \rangle+ b|-\hbar/2 \rangle, \quad |a|^2+|b|^2=1.$$
The probability to find ##+\hbar/2## when measuring ##\sigma_z## is
$$P(+\hbar/2)=|a|^2,$$
and the probability to find ##-\hbar/2## is
$$P(-\hbar/2)=|b|^2.$$
So what's the question?

PS: For writing readable math, it's most convenient to use LaTeX. Just check the "LaTeX Guide" link below the entry form:

https://www.physicsforums.com/help/latexhelp/
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top