Probability of Negative Value in Sz 1/2 Spin System w/ Lambda 1 & 2

AI Thread Summary
The probability of obtaining a negative value in a Sz 1/2 spin system is questioned, particularly when considering specific values for lambda. The discussion clarifies that probabilities must be non-negative, and thus a negative measurement result is impossible. The wavefunction provided suggests a need to determine the coefficients corresponding to the spin states to calculate the probabilities accurately. The eigenvalues of the spin operator indicate that the probabilities for measuring spin-up and spin-down can be derived from the coefficients of the wavefunction. Ultimately, the inquiry revolves around calculating the probability of measuring the spin as spin-down.
ellenb899
Messages
18
Reaction score
0
Homework Statement
Will the probability to provide a negative value of a Sz 1/2 spin system always be 0? If lambda 1 = hbar/2 and lambda 2 = -h bar/2 ?
Relevant Equations
P1(Sz = hbar/2) = |c1|^2
Will the probability to provide a negative value of a Sz 1/2 spin system always be 0? If lambda 1 = hbar/2 and lambda 2 = -h bar/2 ?
 
Physics news on Phys.org
The question is not clear. Can you post the full statement?

Also, PhysicsForums requires you to provide an attempt at a solution.
 
Given particle in spin state: wavefunction in bra-ket notation = 3N|1> + i4N|2> (1/2 spin state in z axis)

Q. What is the probability that a measurement of Sz will provide negative value?

My attempt at solution is using the equation I provided, a negative value cannot be obtained as it must be squared. Is this correct?
 
Probabilities are always positive or zero, but it has nothing to do with the sign of what will be measured.

In other words, the question asks for the probability of measuring the spin as spin-down.

ellenbaker said:
Given particle in spin state: wavefunction in bra-ket notation = 3N|1> + i4N|2> (1/2 spin state in z axis)
I don't understand what the states ##\ket{1}## and ##\ket{2}## correspond to.

I guess you will also have to figure out what the value of ##N## is.
 
For a spin 1/2 the eigenvalues of ##\sigma_z## are ##\pm \hbar/2##. A general state is
$$|\psi \rangle = a |\hbar/2 \rangle+ b|-\hbar/2 \rangle, \quad |a|^2+|b|^2=1.$$
The probability to find ##+\hbar/2## when measuring ##\sigma_z## is
$$P(+\hbar/2)=|a|^2,$$
and the probability to find ##-\hbar/2## is
$$P(-\hbar/2)=|b|^2.$$
So what's the question?

PS: For writing readable math, it's most convenient to use LaTeX. Just check the "LaTeX Guide" link below the entry form:

https://www.physicsforums.com/help/latexhelp/
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Thread 'Stacked blocks & pulley system'
I've posted my attempt at a solution but I haven't gone through the whole process of putting together equations 1 -4 yet as I wanted to clarify if I'm on the right path My doubt lies in the formulation of equation 4 - the force equation for the stacked block. Since we don't know the acceleration of the masses and we don't know if mass M is heavy enough to cause m2 to slide, do we leave F_{12x} undetermined and not equate this to \mu_{s} F_{N} ? Are all the equations considering all...
Back
Top