MHB Probability of Selecting a Black Disc

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Disc Probability
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
A box contains 35 red discs and 5 black discs
a disc is selected at random and its color noted.
The disc is then replaced in the box.

a) In 8 such selections what is the probability that a black disk is selected.
i) exactly once ii) at least once

b) The process of selecting and replacing is carried out 400 times
what is the expected number of black discs that would be drawn.

well there are 40 discs so the probability of selecting a black disk it 1 to 8 so i would presume "at least once" is 8 times. but not sure about the "exactly once"

about 400 times, not sure how this is done I just 400/8 to get 50

I don't know the answers to these so just see what would be suggested here.
 
Mathematics news on Phys.org
Re: disc selection

For part a), I would look at the binomial probability formula:

$$P(x)={n \choose x}p^x(1-n)^{n-x}$$

The binomial coefficient $${n \choose x}$$ takes into account the number of ways to get $x$ successes for $n$ trials.

Here $p$ is the probability of drawing a black disc on one trial, $n$ is the number of trials, and $x$ is the number of successes.

For part ii), I would use the fact that it is certain we will either draw zero black discs OR we will draw at least one black disc. This will make your computation much simpler.

Can you show what you can do with these suggestions?
 
karush said:
A box contains 35 red discs and 5 black discs
a disc is selected at random and its color noted.
The disc is then replaced in the box.

a) In 8 such selections what is the probability that a black disk is selected.
i) exactly once ii) at least once

b) The process of selecting and replacing is carried out 400 times
what is the expected number of black discs that would be drawn.

well there are 40 discs so the probability of selecting a black disk it 1 to 8 so i would presume "at least once" is 8 times.
I'm afraid you are completely misunderstanding the question. A probability is a number between 0 and 1 so "8 times" is impossible.

but not sure about the "exactly once"

about 400 times, not sure how this is done I just 400/8 to get 50
As the answer to what question?

I don't know the answers to these so just see what would be suggested here.
 
Re: disc selection

MarkFL said:
For part a), I would look at the binomial probability formula:

$$P(x)={n \choose x}p^x(1-n)^{n-x}$$

The binomial coefficient $${n \choose x}$$ takes into account the number of ways to get $x$ successes for $n$ trials.

Here $p$ is the probability of drawing a black disc on one trial, $n$ is the number of trials, and $x$ is the number of successes.

For part ii), I would use the fact that it is certain we will either draw zero black discs OR we will draw at least one black disc. This will make your computation much simpler.

Can you show what you can do with these suggestions?
sorry so long to get back to this, but we went on to another topic next day, but still want to deal with this

from $${n \choose x} $$ just to get the coefficient i presume $$n = 8$$ and $$x = 1$$ since the ratio is 5:40 or 1:8 so the coefficient would be 8
 
Re: disc selection

karush said:
sorry so long to get back to this, but we went on to another topic next day, but still want to deal with this

from $${n \choose x} $$ just to get the coefficient i presume $$n = 8$$ and $$x = 1$$ since the ratio is 5:40 or 1:8 so the coefficient would be 8

Yes, there are 8 ways to get exactly in black disk, one for each drawing of a disk from the box.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top