Probability of Taxi Arrival in 10 Minutes After 1 Hour Wait

  • Thread starter Thread starter mikemike123
  • Start date Start date
  • Tags Tags
    Probability
mikemike123
Messages
5
Reaction score
0
Heres the question... The time between arrivals of taxis at a busy intersection is exponentially distributed with a mean of 10 minutes.

The question I am stuck on is...

Suppose you have already been waiting for one hour for a taxi, what is the probability that one arrives within the next 10 minutes. (The first part of the problem was to find probability you wait longer then an hour which I figured the limits would be (60<x<infinity).

Well i know mew=beta=10 min=1/lambda=1/10

f(x)= lambda*e^-lambda which will ultimately give me 1/10e^-1/10xdx. I have my integral set up, the thing is I can't figure out my limits. My initial guess was to evaluate the integral from (0<x<60) and subtract (70<x<infinity), ultimately giving me the answer .9984 or 99.84%. I thought it was right but apparently wrong, can someone please help me set up the appropriate limits. Thanks in advance.
 
Physics news on Phys.org
mikemike123 said:
Heres the question... The time between arrivals of taxis at a busy intersection is exponentially distributed with a mean of 10 minutes.

The question I am stuck on is...

Suppose you have already been waiting for one hour for a taxi, what is the probability that one arrives within the next 10 minutes. (The first part of the problem was to find probability you wait longer then an hour which I figured the limits would be (60<x<infinity).

Well i know mew=beta=10 min=1/lambda=1/10

f(x)= lambda*e^-lambda which will ultimately give me 1/10e^-1/10xdx. I have my integral set up, the thing is I can't figure out my limits. My initial guess was to evaluate the integral from (0<x<60) and subtract (70<x<infinity), ultimately giving me the answer .9984 or 99.84%. I thought it was right but apparently wrong, can someone please help me set up the appropriate limits. Thanks in advance.

Not subtract. You have a conditional probability here.
 
Ok so if my given is the answer I got for my first part, .0025. How would I go on finding the Probability of P(AintersectB)?
 
mikemike123 said:
Ok so if my given is the answer I got for my first part, .0025. How would I go on finding the Probability of P(AintersectB)?

You need Pr(60 < t < 70) given Pr(60 < t). What's the formula for that?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
4
Views
1K
Replies
7
Views
1K
Replies
4
Views
2K
Replies
7
Views
2K
Replies
6
Views
2K
Replies
2
Views
1K
Back
Top