MHB Probability Question: At Least One Customer Unable To Claim Car

  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Car Probability
tmt1
Messages
230
Reaction score
0
So, at a car rental company, 20% of car reservations are not claimed. There is a total of 22 cars and the manager takes 25 reservations a day.

If all cars are claimed for a day, what is the probability that one or more customer who had reservations were unable to claim their car?

I need to find:

$P(one-or-more-reservations-not-able-to-claim | all-cars-claimed) = \frac{P(one-or-more-reservations-not-able-to-claim \land all-cars-claimed)} {P(all-cars-claimed)}$To get the probability that all cars are claimed, I take ${{25}\choose{22}} {0.8 ^{22} * 0.2^ 3}$ + ${{25}\choose{23}} {0.8 ^{23} * 0.2^ 2}$ + ${{25}\choose{25}} {0.8 ^{25} * 0.2^ 0}$ which is $P(all-cars-claimed) = 0.2339$.

The probability that 23 or more of reservations show up is $0.0982252228436887$

Based on the solution, I can infer that $0.0982252228436887 = P(one-or-more-reservations-not-able-to-claim \land all-cars-claimed) $. Thus, the answer is $0.0982252228436887 / 0.2339$.

But I'm not sure how to reason for myself that $0.0982252228436887 = P(one-or-more-reservations-not-able-to-claim \land all-cars-claimed) $.
 
Mathematics news on Phys.org
tmt said:
So, at a car rental company, 20% of car reservations are not claimed. There is a total of 22 cars and the manager takes 25 reservations a day.

If all cars are claimed for a day, what is the probability that one or more customer who had reservations were unable to claim their car?

Hi tmt, (Wave)

For the quoted part in bold, should this read "If all cars are reserved for the day..."? I think there are two events here, reserving and claiming.

How did you get "The probability that 23 or more of reservations show up is 0.0982252228436887"?
 
Jameson said:
Hi tmt, (Wave)

For the quoted part in bold, should this read "If all cars are reserved for the day..."? I think there are two events here, reserving and claiming.

How did you get "The probability that 23 or more of reservations show up is 0.0982252228436887"?

No -- there are 25 reservations every day. And there is a 0.8 probability that a reservation is claimed.

Therefore, each day it is expected that 20 cars will be claimed (25 * 0.8).

The probability that 23 or more of reservations are claimed ${{25}\choose{23}} {0.8 ^{23} * 0.2^ 2}$ + ${{25}\choose{24}} {0.8 ^{24} * 0.2^ 1}$ + ${{25}\choose{25}} {0.8 ^{25} * 0.2^ 0}$ which is $P(all-cars-claimed) = 0.098 $

Since there are only 22 cards, that means there is a 0.098 probability that 1 or more people that made a reservation do not actually get to claim their car.

To get the probability that all cars are claimed is the same as 22 or more reservations are claimed (if 22 reservations are claimed, then all available cars are claimed, thus if > 22 reservations are claimed, also all available cars are claimed).

This is ${{25}\choose{22}} {0.8 ^{22} * 0.2^ 3}$ + ${{25}\choose{23}} {0.8 ^{23} * 0.2^ 2}$ + ${{25}\choose{24}} {0.8 ^{24} * 0.2^ 1}$ + ${{25}\choose{25}} {0.8 ^{25} * 0.2^ 0}$ which is $P(all-cars-claimed) = 0.2339$.

Now, the question is if all cars are claimed for the day, what is the probability that 1 or more reservations are unable to claim their car?

Let call P(A) the probability that all cars are claimed for the day. Then $P(A) = 0.23$ from the work above.

Lets call P(B) the probability that 23 or more reservations make their claim. Then $P(B) = 0.098$.

So how do we answer this question?

The solution says 0.098 / 0.23 but I'm not sure how to intuit this.
 
Last edited:
tmt said:
But I'm not sure how to reason for myself that $0.0982252228436887 = P(one-or-more-reservations-not-able-to-claim \land all-cars-claimed) $.

Don't we have:
$$
P(\text{one-or-more-reservations-not-able-to-claim} \land \text{all-cars-claimed}) \\
= P(Claims > 22 \land Claims \ge 22) \\
= P(Claims > 22) \\
= \binom{25}{23} 0.8^{23}0.2^2 + \binom{25}{24} 0.8^{24}0.2^1 + \binom{25}{25} 0.8^{25}0.2^0
$$
?
 
I like Serena said:
Don't we have:
$$
P(\text{one-or-more-reservations-not-able-to-claim} \land \text{all-cars-claimed}) \\
= P(Claims > 22 \land Claims \ge 22) \\
= P(Claims > 22) \\
= \binom{25}{23} 0.8^{23}0.2^2 + \binom{25}{24} 0.8^{24}0.2^1 + \binom{25}{25} 0.8^{25}0.2^0
$$
?

Oh yeah, finally clicked.

Simple a matter of P(A | B) = P(A ^ B) / P(B)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top