1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Probability question - Bayes' Theorem - 4 Balls, 2 white, P(all white) = ?

  1. Mar 23, 2010 #1
    1. The problem statement, all variables and given/known data

    A Bag contains 4 balls.two balls are drawn at random,and are found to be white.what is the probability that all balls are white?

    2. Relevant equations
    P(B/A) = P(A intersection B) / P (A)

    3. The attempt at a solution

    A = Two balls are white.
    B = All four balls are white.

    I wrote P(B/A) and P(A/B) according to Bayes' theorem and eliminated the intersection term, to arrive with P(B/A) = P(B)/P(A). Ofcourse, P(A|B) = 1.

    How do i solve these two now?

    I found an alternate solution on net which goes this way...
    and another which says...
    Can anyone, apart from helping me with my question, explain the first aliter and the mistake in assuming the probability = 1/2 in the second aliter?
  2. jcsd
  3. Mar 23, 2010 #2


    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Education Advisor

    I don't think you can solve this without more information. For example, if all you have is white balls to fill the bag, then the probability is obviously 1. On the other hand, if white is just one of an equally likely million colors, the probability will be close to 0.
  4. Mar 23, 2010 #3


    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    Dearly Missed

    Hi, dharavsolanki!

    You have three possible states that two whites out of four can arise from:

    A) 2 whites and 2 non-whites.
    B) 3 whites and 1 non-white
    C) 4 whites.

    You are to determine the probability of C, given that you pick two whites.

    The easiest way to solve this is as follows:

    If you have case A), there will be a total of 4*3=12 possible outcomes (permutations included), with 2 of those outcomes being to get two whites.

    If you have case B), there will also be 12 possible outcomes, with 3*2=6 of those being to get two whites.

    If you have case C) there will also be 12 possible outcomes, ALL of which yield two whites.

    Given that you get two whites, there is in total 2+6+12=20 outcomes you have picked 1 from!

    Thus, the chance that this outcome lies in C) is simply 12/20=3/5.
  5. Mar 23, 2010 #4
    This is only right if you assume that the the a priori probabilities of cases A, B and C are all 1/3. That fact should have been given in the question.
  6. Mar 24, 2010 #5


    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    Dearly Missed

    Sure enough.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook