MHB Probability Question with Mutually Exclusive and Indpendent Events

cmkluza
Messages
118
Reaction score
1
Hello, I'm sorry for the title of this thread, but I don't actually even know what to call this. I'm very bad at probability and statistics in general, but I have the following problem:

Events A and B are such that P(A) = 0.3 and P(B) = 0.4.
(a) Find the value of P(AB) when
(i) A and B are mutually exclusive;
(ii) A and B are independent.

(b) Given that P(AB) = 0.6, find P(A | B).

I would like to start trying this, but I don't really know where to start. I can hardly understand the wording used in these kinds of problems, much less make sense of the math. Can anyone make any suggestions to help me out?

Any help is greatly appreciated!
 
Mathematics news on Phys.org
cmkluza said:
Hello, I'm sorry for the title of this thread, but I don't actually even know what to call this. I'm very bad at probability and statistics in general, but I have the following problem:

Events A and B are such that P(A) = 0.3 and P(B) = 0.4.
(a) Find the value of P(AB) when
(i) A and B are mutually exclusive;
(ii) A and B are independent.

(b) Given that P(AB) = 0.6, find P(A | B).

I would like to start trying this, but I don't really know where to start. I can hardly understand the wording used in these kinds of problems, much less make sense of the math. Can anyone make any suggestions to help me out?

Any help is greatly appreciated!

Your question is fine :).
For a conceptual idea you can think of tossing a fair coin: A is heads and B is tails.

Are you aware of any formulas for probabilities? In particular $$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Notation:
  • [math]P(A \cap B)[/math] is the intersection but I think of it as and (as in getting heads and tails)
  • [math]P(A \cup B)[/math] is called the union but I find it easier to think of it as or (getting heads or tails)



If events A and B are mutually exclusive it means that the chance of A and B happening is 0. In our coin example you cannot get heads and tails so they are mutually exclusive.

Using notation this is: $$P(A \cap B) = 0$$



Independent events are ones which do not change however many times you do them. Tossing a coin will always be 50/50 whether it's the first or the fiftieth toss. Contrast drawing cards from a deck (without replacement): if you draw the 3 of hearts you cannot draw it a second time.

In this case: [math]P(A \cap B) = P(A)P(B)[/math]

Can you apply this to your problem?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top