MHB Probability that 12 have purchased yellow gold diamond rings

eatinbyzombies3
Messages
3
Reaction score
0
Let’s also say that 65% of all diamond rings sold in WV are yellow gold. In a random sample of 20 folks, what is the probability that 12 have purchased yellow gold diamond rings?thank you and I promise this is the last question today.:D
 
Mathematics news on Phys.org
re: probability that 12 have purchased yellow gold diamond rings

Hopefully someone else will confirm this approach, but it seems like you can interpret this to be a binomial random variable. If not then my apologies in advance. Let's say that $P[\text{gold}]=0.65$.

The general formula for a binomial random variable is:

$$P[X=k]=\binom{n}{k}p^{k}(1-p)^{n-k}$$

where $p$ is the success probability, $n$ is the number of trials and $k$ is the number of successes. Can you fill in the information?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top