sanctifier
- 58
- 0
Homework Statement
The probability density function (p.d.f.) of a random variable X is
P(X=k)= p^{k} (1-p) \;\;\;\; where \;\;\;\; 0<p<1 \;\;\;\; and \;\;\;\; k=0,1,2,...
Question 1: what is the moment generating function (m.g.f.) of X?
Question 2: What are expectation E(x) and variance Var(x) of X?
Question 3: if X_{1},\; X_{2},\;\;...,\;\; X_{n} are sampled from X, what is the distribution of \sum_{i=1}^{n} X_i
Homework Equations
Nothing special.
The Attempt at a Solution
Answer 1:
E[e^{tx} ] = \sum_{x=0, 1, ...}^{ \infty } e^{tx} p^x (1-p)=(1-p) \sum_{x=0, 1, ...}^{ \infty } {e^tp}^x=(1-p)\lim_{n \to \infty} \frac{1-{e^tp}^n}{1-e^tp} = \frac{1-p}{1-e^tp}
when \;\;0<e^tp<1,\;\;i.e.,\;\;t<ln \frac{1}{p}
Hence, m.g.f. is \psi (t) = \frac{1-p}{1-e^tp}
Answer 2:
\begin{cases} \psi' (t) = \frac{d\psi (t)}{dt} = - \frac{1-p}{(1-e^tp)^2} (-e^tp) = \frac{(1-p)e^tp}{(1-e^tp)^2} \\ \psi'' (t) = \frac{d\psi' (t)}{dt} =(1-p)p \frac{e^t(1-e^tp)^2+e^t2(1-e^tp)e^tp}{(1-e^tp)^4}=(1-p)pe^t \frac{1+e^tp}{(1-e^tp)^3} \end{cases}
\begin{cases} \psi' (0) = \frac{(1-p)p}{(1-p)^2}= \frac{p}{1-p} \\ \psi'' (0) = \frac{(1-p)p(1+p)}{(1-p)^3} = \frac{p(1+p)}{(1-p)^2} \end{cases}
E(X)= \psi' (0) \;\; and\;\; Var(X) = E[X^2]-E[X]^2 = \psi'' (0) - ( \psi' (0))^2 = \frac{p}{(1-p)^2}
Answer 3:
{\overline{X}} _n = \frac{\sum_{i=1}^{n} X_i }{n} can be approximated by a normal distribution of \mu =E(x) and \sigma ^2 =\frac{Var(X)}{n}, because \sum_{i=1}^{n} X_i = n {\overline{X}} _n, hence \sum_{i=1}^{n} X_i has a normal distribution of \mu =nE(X) and \sigma ^2 =nVar(X)
Are these answers correct? Thank you in advance!