Probablities from wave function

Click For Summary
The discussion revolves around calculating the probability of a particle in a box being between specific positions when in the second excited state. The integral to evaluate is set up correctly, but the user encounters issues with the sine function evaluations leading to incorrect conclusions about the probability being zero. A correction is pointed out regarding the grouping of terms in the integral evaluation, suggesting that the sine functions should not be factored out incorrectly. The final probability calculation should yield a non-zero value, specifically 2/3, indicating a misunderstanding in the integration process. The conversation highlights the importance of careful algebraic manipulation in quantum mechanics problems.
Badger
Messages
28
Reaction score
0

Homework Statement


P = \int_a^b \, \left| \psi(x) \right|^2 \, dx

If the particle in the box is in the second excited state (i.e., n=3), what is the probability P that it is between x=L/3 and x=L? To find this probability, you will need to evaluate the integral:

\int_{L/3}^L \left(\sqrt{\frac{2}{L}} \sin \left( \frac{n \pi x}{L} \right) \right)^2 \, dx = \frac{2}{L} \int_{L/3}^L \sin^2 \left( \frac{n \pi x}{L} \right) \, dx .

Homework Equations


This one I think.
<br /> * \int \sin^2(kx) dx = \frac{x}{2} - \frac{1}{4k} \sin(2 k x) +C, and<br />

The Attempt at a Solution


Set k = n(pi)/L or np/L

[2/L][(x/2 - 1/4k)sin(2kx)]|L and L/3

put k back in as it is.

[2/L]{[L/2 - L/4np]sin(2*np/L*L)]-[L/3*2 - L/4np]sin(2 * np/L * L/3)]}

cancel out the L's and plug-in n = 3

2{[(1/2 - 1/12p)sin(6p)] - [(1/6) - (1/12p)]sin(2p)]}

well the answer isn't 0. but sin6p and sin2p both equal 0
2[0 - 0] = 0

Where did I go wrong?
 
Physics news on Phys.org
sin^2(kx) = [1-cos(2kx)]/2. Now can you integrate directly?
 
doesn't seem like it... integrating the cos(2kx) part just gives me a sin function again and again I get an integer times pi within leading to more 0. right?
 
(I had merely showed you how to evaluate the integral sin^2(kx), for which you have already written the formula.)

Anyway, you have done this mistake:
2{[(1/2 - 1/12p)sin(6p)] - [(1/6) - (1/12p)]sin(2p)]} = 2{(1/2) - (1/6)} = 2/3.
 
What is mean probability is zero?
 
It looks like you mistakenly are grouping the sine function of your integral outside the difference from your integral formula: (u-v)sin(w) should be (u - v sin(w) ).
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

Replies
28
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
18
Views
1K
Replies
8
Views
1K
Replies
42
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 11 ·
Replies
11
Views
849