WraithM
- 32
- 0
Okay, here's a quantum mechanics problem. I am just starting with quantum, so I have no idea about this stuff. I am requesting guidence or a push in the right direction, not nessicarily a complete answer, please. Also, I don't know if this fits into the Advanced Physics help forum. I've never posted on the homework help forum before. If this is too simple, please let me know.
A particle of mass m is in the state
\Psi (x, t) = A e^{-a[(m x^2/\hbar) + i t]},
where A and a are positive real constants.
(a) Find A.
Shroedinger's equation?
\int_{-\infty}^{+\infty} \mid \psi \mid ^2 dx = 1
Maybe?
I guess my plan was to take the complex conjugate of the wave function there, multiply them, and then intregrate with \int_{-\infty}^{+\infty} \mid \psi \mid ^2 dx = 1 to get the answer for A. I ran into troubles along the way, and I have some theories as to where I messed up.
Firstly, I think I took the complex conjugate incorrectly. My knowledge of complex numbers is extremely rusty :( I haven't really studied that since perhaps my sophomore year in high school...
Here's what I said it was:
\Psi^* = A e^{-a[(m x^2/\hbar) - i t]}
So, assuming I did that correctly (which is not a very good assumption
), I moved foreward.
\mid \psi \mid ^2 = A^2 e^{-2 a m x^2/\hbar}
Okay, and that's a gaussian, so the integration is tricky. I assume that this is not the proper way of moving foreward because when I tried to think of how to do the integration I got confused.
Does anybody have a good idea of how to move foreward with this problem?
-WraithM
Homework Statement
A particle of mass m is in the state
\Psi (x, t) = A e^{-a[(m x^2/\hbar) + i t]},
where A and a are positive real constants.
(a) Find A.
Homework Equations
Shroedinger's equation?
\int_{-\infty}^{+\infty} \mid \psi \mid ^2 dx = 1
Maybe?
The Attempt at a Solution
I guess my plan was to take the complex conjugate of the wave function there, multiply them, and then intregrate with \int_{-\infty}^{+\infty} \mid \psi \mid ^2 dx = 1 to get the answer for A. I ran into troubles along the way, and I have some theories as to where I messed up.
Firstly, I think I took the complex conjugate incorrectly. My knowledge of complex numbers is extremely rusty :( I haven't really studied that since perhaps my sophomore year in high school...
Here's what I said it was:
\Psi^* = A e^{-a[(m x^2/\hbar) - i t]}
So, assuming I did that correctly (which is not a very good assumption
\mid \psi \mid ^2 = A^2 e^{-2 a m x^2/\hbar}
Okay, and that's a gaussian, so the integration is tricky. I assume that this is not the proper way of moving foreward because when I tried to think of how to do the integration I got confused.
Does anybody have a good idea of how to move foreward with this problem?
-WraithM
Last edited: