MHB Problem involving arithmetic and geometric mean.

AI Thread Summary
For three positive numbers \(a, b, c\) such that \(a + b + c = 1\), it is proven that \(ab^2c^3 \leq \frac{1}{432}\). The proof utilizes the arithmetic mean (AM) and geometric mean (GM) inequality by considering the numbers \(a, \frac{b}{2}, \frac{b}{2}, \frac{c}{3}, \frac{c}{3}, \frac{c}{3}\). The AM is calculated to be \(\frac{1}{6}\), while the GM is expressed in terms of \(ab^2c^3\). The inequality \(AM \geq GM\) leads to the conclusion that \(\frac{2^2 3^3}{6^6} \geq ab^2c^3\), confirming the original statement. This establishes a clear relationship between the means and the product of the variables.
DrunkenOldFool
Messages
20
Reaction score
0
$a,b,c$ are any three positive numbers such that $a+b+c=1$. Prove that

$$ab^2c^3 \leq \frac{1}{432}$$
 
Mathematics news on Phys.org
Consider the 6 numbers

$$a,\frac{b}{2},\frac{b}{2},\frac{c}{3},\frac{c}{3},\frac{c}{3}$$

The arithmetic mean of these numbers is

$\displaystyle AM = \dfrac{a+\frac{b}{2}+\frac{b}{2}+\frac{c}{3}+\frac{c}{3}+\frac{c}{3}}{6}$

$=\frac{1}{6}$

Similarly, you can calculate the Geometric Mean.

$\displaystyle GM=\left( \frac{b}{2}\frac{b}{2}\frac{c}{3}\frac{c}{3}\frac{c}{3}\right)^{\frac{1}{6}}=\left( \frac{ab^2 c^3}{2^2 3^3}\right)^{1 \over 6}$

$AM \geq GM$
$\displaystyle \frac{1}{6} \geq \left( \frac{ab^2 c^3}{2^2 3^3}\right)^{1 \over 6}$

$\displaystyle \Rightarrow \frac{2^23^3}{6^6} \geq ab^2c^3$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Back
Top