For three positive numbers \(a, b, c\) such that \(a + b + c = 1\), it is proven that \(ab^2c^3 \leq \frac{1}{432}\). The proof utilizes the arithmetic mean (AM) and geometric mean (GM) inequality by considering the numbers \(a, \frac{b}{2}, \frac{b}{2}, \frac{c}{3}, \frac{c}{3}, \frac{c}{3}\). The AM is calculated to be \(\frac{1}{6}\), while the GM is expressed in terms of \(ab^2c^3\). The inequality \(AM \geq GM\) leads to the conclusion that \(\frac{2^2 3^3}{6^6} \geq ab^2c^3\), confirming the original statement. This establishes a clear relationship between the means and the product of the variables.