Problem with idempotent matrices

  • Context: MHB 
  • Thread starter Thread starter Samme013
  • Start date Start date
  • Tags Tags
    Matrices
Click For Summary

Discussion Overview

The discussion revolves around the properties of idempotent matrices and the challenge of proving that the matrix \(I+A\) is non-singular without relying on a given inverse. Participants explore various approaches and reasoning related to determinants and matrix identities.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant expresses difficulty in proving that \(I+A\) is non-singular without using the given inverse.
  • Another participant suggests using the identity \((I+A)(I-\tfrac{1}{2}A)=I\) to demonstrate the invertibility of \(I+A\), questioning why it cannot be used.
  • Further discussion includes the properties of idempotent matrices, noting that their determinants can only be 0 or 1, and exploring the implications of these properties on the singularity of \(I+A\).
  • Participants discuss forming products of matrices, such as \((I+A)(I+A)\) and \((I-A)(I+A)\), but express uncertainty about the conclusions that can be drawn from these products.
  • One participant mentions that the exercise is from a chapter prior to the introduction of determinants, suggesting that the solution may not be expected to involve them.

Areas of Agreement / Disagreement

Participants do not reach a consensus on how to prove the non-singularity of \(I+A\) without using the given inverse. Multiple viewpoints and approaches are presented, with some participants questioning the validity of certain methods while others propose alternative reasoning.

Contextual Notes

Limitations include the participants' lack of familiarity with determinants, as the exercise is from a chapter that precedes their introduction. This may affect the applicability of certain mathematical approaches discussed.

Samme013
Messages
15
Reaction score
0
OK so i can prove that the given inverse is actually the inverse but i can not prove that I+A is non singular without using the given inverse so how do i go about doing that?(I have done part a)
Thanks in advance.View attachment 3586
 

Attachments

  • E8PTbbG.png
    E8PTbbG.png
    3.9 KB · Views: 106
Physics news on Phys.org
I'm confused. Is there a reason you can't use the fact that $(I+A)(I-\tfrac12 A)=I$ in order to show that $I+A$ is invertible?
 
Ackbach said:
I'm confused. Is there a reason you can't use the fact that $(I+A)(I-\tfrac12 A)=I$ in order to show that $I+A$ is invertible?

I am not sure if i can use that fact and i can't really ask but it is kind of trivial if i can use it.Is it even possible to show it without using that?
 
Samme013 said:
I am not sure if i can use that fact and i can't really ask but it is kind of trivial if i can use it.Is it even possible to show it without using that?

It might be. You might be able to do something clever with determinants. Let me marshall the facts such as we know them:
\begin{align*}
&\text{Idempotent matrices have determinant equal to } 0 \text{ or } 1. \text{ Why?} \\
A^2&=A \\
(\det(A))^2&=\det(A) \\
(\det(A))^2-\det(A)&=0 \\
\det(A)(\det(A)-1)&=0 \\
\det(A)&\in\{0,1\} \\
\therefore \; \det(I-A)&\in\{0,1\}. \\
&\text{Idempotent matrices are either the identity matrix, or are singular.} \\
&\text{Why? Assume } A \text{ is non-singular. Then } \\
A^2&=A \\
A^{-1}AA&=A^{-1}A \\
IA&=I \\
A&=I.
\end{align*}
Now we could take two cases: 1. $A=I$. 2. $\det(A)=0$.

For the first case, $I+A=I+I=2I$, and the determinant is $2^n\not=0$, where $A$ is $n\times n$.

For the second case, we have $\det(A)=0$. What if you formed the product
$$(I+A)(I+A)=I^2+IA+AI+A^2=I+2A+A=I+3A.$$
Not sure where that leads you. You could also form
$$(I-A)(I+A)=I^2+IA-AI-A^2=I+A-A-A=I-A.$$
Just seeing here:
$$(I-A)(I-A)=I^2-IA-AI+A^2=I-A-A+A=I-A.$$
Evidently, $(I-A)(I-A)=(I-A)(I+A)$, but I don't see where you can go further. There's no guarantee that $I-A$ is invertible (indeed, unless $I-A=I$, it won't be!), so you can't cancel anything, and the determinants won't give you anything here, either.

I think that using the formula for the inverse the problem asks you to show is just fine. If you simply compute $(I+A)(I-\tfrac12 A)=I$, you have just shown that $I+A$ is invertible. The problem asks you to show those two things. It does not tell you in what order to do them.
 
Ackbach said:
It might be. You might be able to do something clever with determinants. Let me marshall the facts such as we know them:
\begin{align*}
&\text{Idempotent matrices have determinant equal to } 0 \text{ or } 1. \text{ Why?} \\
A^2&=A \\
(\det(A))^2&=\det(A) \\
(\det(A))^2-\det(A)&=0 \\
\det(A)(\det(A)-1)&=0 \\
\det(A)&\in\{0,1\} \\
\therefore \; \det(I-A)&\in\{0,1\}. \\
&\text{Idempotent matrices are either the identity matrix, or are singular.} \\
&\text{Why? Assume } A \text{ is non-singular. Then } \\
A^2&=A \\
A^{-1}AA&=A^{-1}A \\
IA&=I \\
A&=I.
\end{align*}
Now we could take two cases: 1. $A=I$. 2. $\det(A)=0$.

For the first case, $I+A=I+I=2I$, and the determinant is $2^n\not=0$, where $A$ is $n\times n$.

For the second case, we have $\det(A)=0$. What if you formed the product
$$(I+A)(I+A)=I^2+IA+AI+A^2=I+2A+A=I+3A.$$
Not sure where that leads you. You could also form
$$(I-A)(I+A)=I^2+IA-AI-A^2=I+A-A-A=I-A.$$
Just seeing here:
$$(I-A)(I-A)=I^2-IA-AI+A^2=I-A-A+A=I-A.$$
Evidently, $(I-A)(I-A)=(I-A)(I+A)$, but I don't see where you can go further. There's no guarantee that $I-A$ is invertible (indeed, unless $I-A=I$, it won't be!), so you can't cancel anything, and the determinants won't give you anything here, either.

I think that using the formula for the inverse the problem asks you to show is just fine. If you simply compute $(I+A)(I-\tfrac12 A)=I$, you have just shown that $I+A$ is invertible. The problem asks you to show those two things. It does not tell you in what order to do them.

The exercise is listed under a chapter which is before determinants are introduced( i have no clue what they are yet) so most likely it is not expected to come up wit that solution.I will definitely come back and take a look at this when i get to the next chapter though, thanks for helping !
 
Samme013 said:
The exercise is listed under a chapter which is before determinants are introduced( i have no clue what they are yet) so most likely it is not expected to come up wit that solution.I will definitely come back and take a look at this when i get to the next chapter though, thanks for helping !

You're very welcome!
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 39 ·
2
Replies
39
Views
5K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K