Robin04
- 259
- 16
I agree that the problem wasn't specific enough because I didn't really understand it myself either. Now I think I'm starting to get a clearer picture about it thanks to this discussion. First I didn't understand why do I have to choose between additive and multiplicative groups but now I see why is this a question. This wasn't specified by my teacher but I have a partial answer as I worked a bit on the problem.
I started with simple 2x2 matrices. Let's say we have ## G = \begin{pmatrix} a & b \\c & d \end{pmatrix}##, where ##a,b,c,d \in \mathbb{R}##.
We're looking for all possible ## M = \begin{pmatrix} \alpha & \beta \\\gamma & \delta \end{pmatrix}##, ##\alpha,\beta,\gamma,\delta \in \mathbb{R}## such that ##GM = MG##
I did both multiplications, set up a system of equations and solved it.
##\alpha = \frac{\gamma (a-d)}{c}##
##\beta = \frac{\gamma b}{c}##
##\gamma \in \mathbb{R}##
##\delta = 0##
These ##M## matrices form a group with addition. Now what I don't know is how to generalize this to ##n \times n## matrices and I'm not sure if they form a group with other operations too. They don't with multiplication.
Also ##M## cannot be equal to ##G## but ##GG=GG## is necessarily true.
I started with simple 2x2 matrices. Let's say we have ## G = \begin{pmatrix} a & b \\c & d \end{pmatrix}##, where ##a,b,c,d \in \mathbb{R}##.
We're looking for all possible ## M = \begin{pmatrix} \alpha & \beta \\\gamma & \delta \end{pmatrix}##, ##\alpha,\beta,\gamma,\delta \in \mathbb{R}## such that ##GM = MG##
I did both multiplications, set up a system of equations and solved it.
##\alpha = \frac{\gamma (a-d)}{c}##
##\beta = \frac{\gamma b}{c}##
##\gamma \in \mathbb{R}##
##\delta = 0##
These ##M## matrices form a group with addition. Now what I don't know is how to generalize this to ##n \times n## matrices and I'm not sure if they form a group with other operations too. They don't with multiplication.
Also ##M## cannot be equal to ##G## but ##GG=GG## is necessarily true.