I am trying to understand how it can be shown that under parity transformation we have to have [itex] \hat{P} \hat{a}_{\mathbf{p},\lambda} \hat{P} = - \hat{a}_{-\mathbf{p},\lambda} [/itex], I mean the negative sign (negative intrinsic parity of photon). So I am trying to prove that from the vector nature of four potential it follows that [itex]\eta = -1[/itex] in the relation [itex] \hat{P} \hat{a}_{\mathbf{p},\lambda} \hat{P} = \eta \hat{a}_{-\mathbf{p},\lambda} [/itex](adsbygoogle = window.adsbygoogle || []).push({});

In radiation gauge the second quantized four-potential is:

[tex]

\mathbf{A}(x) = \int \frac{d^3p}{(2 \pi)^3 \sqrt{2 \omega_p}} \sum_{\lambda =1,2} \left [ \boldsymbol{\epsilon}(\mathbf{p}, \lambda) \hat{a}_{\mathbf{p},\lambda} e^{-ipx} +\boldsymbol{\epsilon}^*(\mathbf{p}, \lambda) \hat{a}_{\mathbf{p},\lambda}^* e^{ipx} \right ]

[/tex]

From vector nature of $\mathbf{A}$ we should have:

[tex]

\hat{P} \mathbf{A}(t,\mathbf{x}) \hat{P} = - \mathbf{A}(t,\mathbf{x'}=-\mathbf{x})

[/tex]

Applying parity operator:

[tex]

\hat{P} \mathbf{A} \hat{P}= \int \frac{d^3p}{(2 \pi)^3 \sqrt{2 \omega_p}} \eta \sum_{\lambda =1,2} \left [ \boldsymbol{\epsilon}(\mathbf{p}, \lambda) \hat{a}_{-\mathbf{p},\lambda} e^{-ipx} +\boldsymbol{\epsilon}^*(\mathbf{p}, \lambda) \hat{a}_{-\mathbf{p},\lambda}^* e^{ipx} \right ] \\

\hat{P} \mathbf{A}(x) \hat{P}= \int \frac{d^3p'}{(2 \pi)^3 \sqrt{2 \omega_p}} \eta \sum_{\lambda =1,2} \left [ \boldsymbol{\epsilon}(-\mathbf{p'}, \lambda) \hat{a}_{\mathbf{p'},\lambda} e^{-ip'x'} +\boldsymbol{\epsilon}^*(\mathbf{-p'}, \lambda) \hat{a}_{\mathbf{p'},\lambda}^* e^{ip'x'} \right ]

[/tex]

On the other hand for circular polarization vectors the flipping of the momentum sign ammouts to rotation of the direction of momentum by 180, e.g. around the axes $x$:

[tex]

\boldsymbol{\epsilon}(\mathbf{p},1) = \frac{1}{\sqrt{2}}\{1,i,0\} \Rightarrow \boldsymbol{\epsilon}(-\mathbf{p},1) = \frac{1}{\sqrt{2}}\{1,-i,0\} \\

\boldsymbol{\epsilon}(\mathbf{p},2) = \frac{1}{\sqrt{2}}\{1,-i,0\} \Rightarrow \boldsymbol{\epsilon}(-\mathbf{p},2) = \frac{1}{\sqrt{2}}\{1,i,0\}

[/tex]

We see that polarizations exchange their places in the equation. Under spatial inversion all coordinates would be reversed and a minus sign would appear in the equation (4). Hence

[tex]

\hat{P} \mathbf{A}(x) \hat{P}= \int \frac{d^3p'}{(2 \pi)^3 \sqrt{2 \omega_p}} (-\eta) \sum_{\lambda =1,2} \left [ \boldsymbol{\epsilon}(\mathbf{p'}, \mp) \hat{a}_{\mathbf{p'},\pm} e^{-ip'x'} +\boldsymbol{\epsilon}^*(\mathbf{-p'}, \mp) \hat{a}_{\mathbf{p'},\pm}^* e^{ip'x'} \right ]

[/tex]

I don't understand how can this equation (7) be compared with equation (2) to deduce that [itex]\eta=-1[/itex], the polarizations echanged their places!!!!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Problem with Parity for photons

**Physics Forums | Science Articles, Homework Help, Discussion**