I am trying to understand how it can be shown that under parity transformation we have to have [itex] \hat{P} \hat{a}_{\mathbf{p},\lambda} \hat{P} = - \hat{a}_{-\mathbf{p},\lambda} [/itex], I mean the negative sign (negative intrinsic parity of photon). So I am trying to prove that from the vector nature of four potential it follows that [itex]\eta = -1[/itex] in the relation [itex] \hat{P} \hat{a}_{\mathbf{p},\lambda} \hat{P} = \eta \hat{a}_{-\mathbf{p},\lambda} [/itex](adsbygoogle = window.adsbygoogle || []).push({});

In radiation gauge the second quantized four-potential is:

[tex]

\mathbf{A}(x) = \int \frac{d^3p}{(2 \pi)^3 \sqrt{2 \omega_p}} \sum_{\lambda =1,2} \left [ \boldsymbol{\epsilon}(\mathbf{p}, \lambda) \hat{a}_{\mathbf{p},\lambda} e^{-ipx} +\boldsymbol{\epsilon}^*(\mathbf{p}, \lambda) \hat{a}_{\mathbf{p},\lambda}^* e^{ipx} \right ]

[/tex]

From vector nature of $\mathbf{A}$ we should have:

[tex]

\hat{P} \mathbf{A}(t,\mathbf{x}) \hat{P} = - \mathbf{A}(t,\mathbf{x'}=-\mathbf{x})

[/tex]

Applying parity operator:

[tex]

\hat{P} \mathbf{A} \hat{P}= \int \frac{d^3p}{(2 \pi)^3 \sqrt{2 \omega_p}} \eta \sum_{\lambda =1,2} \left [ \boldsymbol{\epsilon}(\mathbf{p}, \lambda) \hat{a}_{-\mathbf{p},\lambda} e^{-ipx} +\boldsymbol{\epsilon}^*(\mathbf{p}, \lambda) \hat{a}_{-\mathbf{p},\lambda}^* e^{ipx} \right ] \\

\hat{P} \mathbf{A}(x) \hat{P}= \int \frac{d^3p'}{(2 \pi)^3 \sqrt{2 \omega_p}} \eta \sum_{\lambda =1,2} \left [ \boldsymbol{\epsilon}(-\mathbf{p'}, \lambda) \hat{a}_{\mathbf{p'},\lambda} e^{-ip'x'} +\boldsymbol{\epsilon}^*(\mathbf{-p'}, \lambda) \hat{a}_{\mathbf{p'},\lambda}^* e^{ip'x'} \right ]

[/tex]

On the other hand for circular polarization vectors the flipping of the momentum sign ammouts to rotation of the direction of momentum by 180, e.g. around the axes $x$:

[tex]

\boldsymbol{\epsilon}(\mathbf{p},1) = \frac{1}{\sqrt{2}}\{1,i,0\} \Rightarrow \boldsymbol{\epsilon}(-\mathbf{p},1) = \frac{1}{\sqrt{2}}\{1,-i,0\} \\

\boldsymbol{\epsilon}(\mathbf{p},2) = \frac{1}{\sqrt{2}}\{1,-i,0\} \Rightarrow \boldsymbol{\epsilon}(-\mathbf{p},2) = \frac{1}{\sqrt{2}}\{1,i,0\}

[/tex]

We see that polarizations exchange their places in the equation. Under spatial inversion all coordinates would be reversed and a minus sign would appear in the equation (4). Hence

[tex]

\hat{P} \mathbf{A}(x) \hat{P}= \int \frac{d^3p'}{(2 \pi)^3 \sqrt{2 \omega_p}} (-\eta) \sum_{\lambda =1,2} \left [ \boldsymbol{\epsilon}(\mathbf{p'}, \mp) \hat{a}_{\mathbf{p'},\pm} e^{-ip'x'} +\boldsymbol{\epsilon}^*(\mathbf{-p'}, \mp) \hat{a}_{\mathbf{p'},\pm}^* e^{ip'x'} \right ]

[/tex]

I don't understand how can this equation (7) be compared with equation (2) to deduce that [itex]\eta=-1[/itex], the polarizations echanged their places!!!!

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Problem with Parity for photons

Loading...

Similar Threads - Problem Parity photons | Date |
---|---|

I Cosmological constant problem | Mar 10, 2018 |

I Some (unrelated) questions about the measurement problem | Mar 9, 2018 |

B Questions about parity | Mar 8, 2018 |

I Spin and polarization basis problem? | Jan 18, 2018 |

I The Rabi problem | Jan 12, 2018 |

**Physics Forums - The Fusion of Science and Community**