What is a spatial wavefunction in QFT?

in summary, the equation (4.68) is saying that the scattering cross-section is proportional to the square of the momentum of the particles.
  • #1
George Wu
6
3
TL;DR Summary
In peskin P102 ,it mentions spatial wavefunction, I don't know what does it means exactly.
截屏2023-05-13 20.41.13.png

My understanding is:
$$\phi (\mathbf{k})=\int{d^3}\mathbf{x}\phi (\mathbf{x})e^{-i\mathbf{k}\cdot \mathbf{x}}$$
But what is ##\phi (\mathbf{x})## in Qft?
In quantum mechanics,
$$|\phi \rangle =\int{d^3}\mathbf{x}\phi (\mathbf{x})\left| \mathbf{x} \right> =\int{d^3}\mathbf{k}\phi (\mathbf{k})\left| \mathbf{k} \right> $$
where ##\left| \mathbf{x} \right> ## and ##\left| \mathbf{k} \right> ##are the eigenvectors of operater ##\mathbf{X}## and##\mathbf{K}##
In qft, ##\left| \mathbf{k} \right> ##is still the eigenvector of ##\mathbf{K}=-\int{d^3}x\pi (\mathbf{x})\nabla \phi (\mathbf{x})=\int{\frac{d^3k}{(2\pi )^3}}\mathbf{k}a_{\mathbf{k}}^{\dagger}a_{\mathbf{k}}##
However what about ##\left| \mathbf{x} \right> ##?
My question is:
Is there any proper definition of ##\left| \mathbf{x} \right> ##?
Can ##|\phi \rangle ## still be written as:
$$|\phi \rangle =\int{d^3}\mathbf{x}\phi (\mathbf{x})\left| \mathbf{x} \right> $$(maybe with some factors)?
If not, what does spatial wavefunction ##\phi (\mathbf{x})##mean?
 
Last edited:
Physics news on Phys.org
  • #2
This is very misleading. In QFT there are no wave functions, because QFT describes a situation where the particle number is not (necessarily) fixed. In relativistic QT of interacting particles you always can have annihilation and creation processes, which change the particle number or the kind of particles.

A normalizable single-particle state indeed has the form (4.65) with ##\phi(\vec{p})## and arbitrary square-integrable function.

Further in QFT you can define position observables for all massive particles and massless particles with spin 0 or spin 1/2. In this case you have "position eigenstates" as in non-relativsitic QT. All other massless particles do not admit a position operator (particularly for photons!).
 
  • Like
Likes LittleSchwinger and George Wu
  • #3
vanhees71 said:
This is very misleading. In QFT there are no wave functions, because QFT describes a situation where the particle number is not (necessarily) fixed. In relativistic QT of interacting particles you always can have annihilation and creation processes, which change the particle number or the kind of particles.

A normalizable single-particle state indeed has the form (4.65) with ##\phi(\vec{p})## and arbitrary square-integrable function.

Further in QFT you can define position observables for all massive particles and massless particles with spin 0 or spin 1/2. In this case you have "position eigenstates" as in non-relativsitic QT. All other massless particles do not admit a position operator (particularly for photons!).
This question arise when I try to understand the equation (4.68) :
1683988964062.png

In order to understand the factor ##e^{-i\mathbf{b}\cdot \mathbf{k}_B}##:
I use the so-called "spatial wavefunction":
if$$\phi _B(\mathbf{k}_B)=\int{d^3\mathbf{x}}\phi _B(\mathbf{x})e^{-i\mathbf{k}_B\cdot \mathbf{x}}$$
then:$$\int{d^3\mathbf{x}}\phi _B(\mathbf{x}-\mathbf{b})e^{-i\mathbf{k}_B\cdot \mathbf{x}}=\phi _B(\mathbf{k}_B)e^{-i\mathbf{k}_B\cdot \mathbf{b}}$$
So,I would like to know what ##\phi (\mathbf{x})##means.
 
Last edited:
  • #4
Ok! These are (asymptotic) free wave functions or scattering in and out states. The idea is to derive the scattering-matrix elements with such true states, i.e., wave packets which are normalizable to 1. The plane waves or momentum eigenstates are not "true states", because you cannot normalize them to 1 but only to a wave function. Taking normalizable wave packets, that are "narrow in momentum space" to define the S-matrix elements and then take the modulus squared, ##|S_{fi}|^2##, and only then make the incoming and outgoing wave packets plane waves, leads to the correct cross section formula in a very physically intuitive way. This is indeed very nicely treated in Peskin and Schroeder.

Mathematically you can also use a shortcut by quantizing everything first in a (large) finite volume, e.g., taking a cube of length, ##L##, and impose periodic spatial boundary conditions for the fields. Then you have a discrete set of momenta ##\vec{k}=\frac{2 \pi}{L}## and the plane wave modes are only integrated over the finite volume and are thus normalizable. Again you calculate ##|S_{fi}|^2## and then take the "infinite-volume limit" ##L \rightarrow \infty##.
 
  • Like
Likes LittleSchwinger and George Wu
  • #5
vanhees71 said:
Ok! These are (asymptotic) free wave functions or scattering in and out states. The idea is to derive the scattering-matrix elements with such true states, i.e., wave packets which are normalizable to 1. The plane waves or momentum eigenstates are not "true states", because you cannot normalize them to 1 but only to a wave function. Taking normalizable wave packets, that are "narrow in momentum space" to define the S-matrix elements and then take the modulus squared, ##|S_{fi}|^2##, and only then make the incoming and outgoing wave packets plane waves, leads to the correct cross section formula in a very physically intuitive way. This is indeed very nicely treated in Peskin and Schroeder.

Mathematically you can also use a shortcut by quantizing everything first in a (large) finite volume, e.g., taking a cube of length, ##L##, and impose periodic spatial boundary conditions for the fields. Then you have a discrete set of momenta ##\vec{k}=\frac{2 \pi}{L}## and the plane wave modes are only integrated over the finite volume and are thus normalizable. Again you calculate ##|S_{fi}|^2## and then take the "infinite-volume limit" ##L \rightarrow \infty##.
Thanks for your explanation,I think I get the spirit.
 
  • Like
Likes LittleSchwinger and vanhees71

1. What is a spatial wavefunction in QFT?

A spatial wavefunction in QFT, or quantum field theory, is a mathematical representation of the quantum state of a particle or system in terms of its position in space. It describes the probability amplitude of finding a particle at a particular location in space at a given time.

2. How is a spatial wavefunction different from a regular wavefunction?

A regular wavefunction in quantum mechanics describes the state of a single particle in terms of its position and momentum. A spatial wavefunction in QFT, on the other hand, describes the state of a particle as it interacts with other particles and fields in space, taking into account its position and energy as well as the positions and energies of other particles and fields in the system.

3. What is the significance of a spatial wavefunction in QFT?

The spatial wavefunction is a fundamental concept in QFT, as it allows us to understand and predict the behavior of particles and systems at the quantum level. It is essential for calculating the probabilities of different outcomes in particle interactions and for making predictions about the behavior of quantum systems.

4. How is a spatial wavefunction related to the wave-particle duality of quantum mechanics?

In quantum mechanics, particles are described as both waves and particles. The spatial wavefunction is a mathematical representation of the wave aspect of a particle, as it describes the probability amplitude of finding the particle at a particular location in space. This duality is a fundamental aspect of quantum mechanics and is essential for understanding the behavior of particles at the quantum level.

5. Can a spatial wavefunction be observed or measured?

No, a spatial wavefunction cannot be directly observed or measured. It is a mathematical concept that describes the quantum state of a particle or system, and it is used to make predictions about the behavior of particles and systems. However, the effects of a spatial wavefunction can be observed and measured through experiments and observations of particle interactions and other phenomena at the quantum level.

Similar threads

  • Quantum Physics
Replies
6
Views
1K
Replies
3
Views
738
Replies
13
Views
2K
Replies
21
Views
2K
Replies
1
Views
879
  • Quantum Physics
Replies
13
Views
1K
  • Quantum Physics
Replies
4
Views
2K
  • Special and General Relativity
Replies
5
Views
363
Replies
27
Views
9K
Replies
24
Views
2K
Back
Top