Understanding Scalar and Vector Products in Geometric Algebra

Click For Summary
SUMMARY

The discussion clarifies the operations involving scalars and vectors in geometric algebra, specifically addressing scalar and vector products. It establishes four primary types of multiplication: scalar times scalar (producing a scalar), scalar times vector (producing a vector), vector times vector (producing a scalar via the dot product), and vector times vector (producing a vector via the cross product). The participants emphasize the importance of context in interpreting the multiplication symbols, particularly distinguishing between ordinary multiplication and vector operations. Additionally, the conversation touches on the limitations of the 7D cross product in geometric algebra.

PREREQUISITES
  • Understanding of scalar and vector definitions in mathematics
  • Familiarity with geometric algebra concepts
  • Knowledge of vector operations, including dot and cross products
  • Basic comprehension of dimensionality in vector spaces
NEXT STEPS
  • Research the properties of the dot product and cross product in vector algebra
  • Explore the implications of geometric algebra in higher dimensions
  • Study the limitations and applications of the 7D cross product
  • Learn about the Von Neumann construction in set theory
USEFUL FOR

Mathematicians, physics students, and anyone interested in advanced vector operations and geometric algebra applications.

smims
Messages
7
Reaction score
0
(Scalar)·(Scalar) = Scalar
(Scalar)·(Vector) = Scalar
(Vector)·(Vector) = Scalar
(Scalar)x(Scalar) = Not valid
(Scalar)x(Vector) = Vector
(Vector)x(Vector) = VectorDid I get them right, if not why?

Thanks
 
Physics news on Phys.org
By "x" do you mean the vector cross-product? And by "." do you mean the vector scalar product? If the answer is yes, then those operations are only applicable to a pair of vectors. I would say there are four common types of "multiplication" involving scalars and 3D vectors:
  1. Scalar times scalar to produce a scalar (ordinary multiplication)
  2. Scalar times vector to produce a vector (scaling a vector)
  3. Vector times vector to produce a scalar (scalar or "dot" product)
  4. Vector times vector to produce a vector ("cross" product)
 
5. Scalar cross scalar to denote the pair (scalar,scalar). "Not valid" is misleading here.
6. Scalar cross vector also denotes a pair and no vector. If it is supposed to be a vector, the cross has to be explicitly defined, e.g as scaling.
 
fresh_42 said:
5. Scalar cross scalar to denote the pair (scalar,scalar). "Not valid" is misleading here.
You are interpreting AxB for scalars A and B in the sense of the Cartesian product of a pair of sets? [the set of ordered pairs (a,b) where a is an element of A and b is an element of B]. That is rather a stretch since A and B are not sets and their cross product would not be an ordered pair but would, rather, be a [possibly singleton] set of ordered pairs.
 
jbriggs444 said:
You are interpreting AxB for scalars A and B in the sense of the Cartesian product of a pair of sets? [the set of ordered pairs (a,b) where a is an element of A and b is an element of B]. That is rather a stretch since A and B are not sets and their cross product would not be an ordered pair but would, rather, be a [possibly singleton] set of ordered pairs.
Agreed. I simply found "not valid" a bit harsh, esp. because the word scalar has been put into brackets. Sometimes I've also read lines like ##2 \times 2 = 4##.
 
fresh_42 said:
Agreed. I simply found "not valid" a bit harsh, esp. because the word scalar has been put into brackets. Sometimes I've also read lines like ##2 \times 2 = 4##.
If one insists on intepreting ##\times## in the sense of the Cartesian product and interpreting 2 in the sense of set theory and the Von Neumann construction then it would be more correct to say that ##|2 \times 2| = 4## and that ##2 \times 2## = { (0,0), (0,1), (1,0), (1,1) }

This follows since, in the Von Neumann construction, 2 = {0,1}.

Bringing us back on topic for this thread... One should interpret the ##\times## notation according to context. In the context of ##2 \times 2## and a discussion of scalars and vectors, it cannot reasonably denote either a cross product of vectors or a Cartesian product of sets. The most reasonable interpretation would as an ordinary product of integers.
 
Last edited:
Thank you all for your feedback.
The comments certainly help a lot.
 
stevendaryl said:
By "x" do you mean the vector cross-product? And by "." do you mean the vector scalar product? If the answer is yes, then those operations are only applicable to a pair of vectors. I would say there are four common types of "multiplication" involving scalars and 3D vectors:
  1. Scalar times scalar to produce a scalar (ordinary multiplication)
  2. Scalar times vector to produce a vector (scaling a vector)
  3. Vector times vector to produce a scalar (scalar or "dot" product)
  4. Vector times vector to produce a vector ("cross" product)
It works for 7D vectors as well.
 
Zafa Pi said:
It works for 7D vectors as well.

It works in any dimension with geometric algebra as well. Also, the 7D cross product is unsatisfactory: no Jacobi identify and it's not unique.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
1
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K