Projectile motion — Thinking about forces on a curve ball

  • #1
Aurelius120
16
6
TL;DR Summary
It is about a horizontal projectile exhibiting curvillinear motion
When a ball is thrown such that it moves in a curved trajectory in the horizontal plane, it amuses me to think of its dynamics.

In motion of a ball thrown upwards the force of gravity gives it a parabolic trajectory

However when the ball is thrown to curve and hit a target, (in the horizontal plane) it cannot be gravity that causes it to curve because it acts downwards

The force exerted by us also ceases once the ball leaves our hand and moves ahead

Then what is it that gives the required centripetal force to exhibit curvillinear motion
 
Last edited by a moderator:

Answers and Replies

  • #2
Doc Al
Mentor
45,461
1,949
Gravity is not the only force acting on the ball. There is also air to consider.
 
  • #3
Baluncore
Science Advisor
12,054
6,173
Summary:: It is about a horizontal projectile exhibiting curvillinear motion

Then what is it that gives the required centripetal force to exhibit curvillinear motion
To move in a horizontal path, the ball must be spinning with some vertical axis component. The differential air speed of the left and the right hand sides of the ball are then different. That moves the point of stagnation at the front of the ball to one side, so the ball does not experience a balanced airflow. That circulation of air causes the "sideways" force on the ball.
https://en.wikipedia.org/wiki/Magnus_effect
 
  • #4
Aurelius120
16
6
You mean this can never happen on the Moon?😱
 
  • #5
docnet
587
242
You mean this can never happen on the Moon?😱
i've heard the moon also has a negligible amount of atmosphere, so I wouldn't say never!
 
  • #6
Doc Al
Mentor
45,461
1,949
You mean this can never happen on the Moon?😱
Compare the atmospheric pressure on Earth to that on the Moon. (You won't see anyone throwing curve balls on lunar missions.)
 
  • #7
Aurelius120
16
6
Is this also responsible for a knife rotating after it is thrown in air?

Thank you for your help
 
  • #8
Doc Al
Mentor
45,461
1,949
Is this also responsible for a knife rotating after it is thrown in air?
Not sure what you're thinking of. While air resistance does affect the motion, the knife rotates because it was given a spin before leaving the hand. And it generally doesn't follow a curved path in the horizontal plane.
 
  • #9
mpresic3
377
267
The knife can rotate if you spin it. Nevertheless, if you take away the air, and just concentrate on the center of mass of the knife, you will observe tha knife center of mass will follow a parabolic path If you could hurl the knife far enough from the Earth, though, the path would be an ellipse.
 
  • #10
Aurelius120
16
6
But if I spin it
I only give it an initial force
Which ceases as soon as the knife leaves my hand
So there is no force to further rotate
Then why should it rotate?
Could it be due to velocity of approach?
 
  • #11
Doc Al
Mentor
45,461
1,949
But if I spin it
I only give it an initial force
Which ceases as soon as the knife leaves my hand
So there is no force to further rotate
Then why should it rotate?
Could it be due to velocity of approach?
A force (actually a torque about the center of mass) is needed to start the knife rotating, but once it's rotating it will keep on rotating without needing that force. A torque is needed to change the rotation, not to maintain it.

Compare that to force and velocity: A net force is needed to change an object's velocity, but not to maintain it.
 
  • #12
mpresic3
377
267
It does not have to do with velocity. The spinning has to do with angular velocity. When you spin it, (before it leaves your hand, you are rotating it), the angular velocity, think of it as a rotation rate, continues to rotate the knife, even after it leaves your hand.
This is like when you stop applying force, that does not mean the speed is zero. The speed is maintained even without the force. In the same way the rotation is maintained even though there is no force (acutally to be precise, we are talking about torque here not force) on the knife, after it leaves your hand.
 

Suggested for: Projectile motion — Thinking about forces on a curve ball

Replies
49
Views
2K
Replies
22
Views
955
Replies
4
Views
611
  • Last Post
Replies
16
Views
560
Replies
7
Views
1K
Replies
14
Views
567
Replies
15
Views
706
  • Last Post
Replies
23
Views
1K
  • Last Post
Replies
2
Views
1K
Replies
28
Views
1K
Top