Meden Agan
- 94
- 13
- Homework Statement
- During the school holidays, we kick a football against the wall. The place of the kick is the point marked ##\text{A}## in the diagram. The balls hits the wall exactly perpendicular at point ##\text{B}##, and after the bounce it lands at point ##\text{C}##. After bouncing off the ground, the ball bounces back to its original starting point. A collision with a wall or a ground can be modelled as follows: the velocity component parallel to the surface does not change, while the one perpendicular to it changes by a factor of ##(-k)##. Generalize the above case and bounce the ball exactly ##N## times on the ground before returning to its starting position.
a) What is the value of ##k## for a given ##N##?
b) How long is the ball in the air?
Examine in detail the case ##N \to \infty##.
- Relevant Equations
- Projectile motion equations, some Calculus.
Imagine we kick the ball from point ##\text{A}## with horizontal speed ##u_x^{\text{initial, A}} = v \cos \alpha## and vertical speed ##u_y^{\text{initial, A}} = v \sin \alpha##.
The gravitational acceleration is ##\vec g##, the x-axis points towards the wall, the y-axis points upwards.
The first flight ##\text A \to \text B## draws a parabolic trajectory ending when the ball touches the wall at point ##\text B##, at the very highest point of the arc. At that instant, the vertical speed is ##u_y^{\text{initial, B}}=0##; the horizontal speed is still ##u_x^{\text{initial, \, B}}= u_x^{\text{initial, \, A}}##. The height of top point ##\text B## is ##H = \dfrac{{u_y^2}^{\text{initial, A}}}{2g}##; the ascent time is ##t_{\text{ascent}}=\dfrac{u_y^{\text{initial, A}}}{g}##. Then, the horizontal distance between wall and starting point is
$$\begin{aligned}
D_{\text{AB}} &= u_x^{\text{initial, A}} \, t_{\text{ascent}} \\
&= u_x^{\text{initial, A}} \frac{u_y^{\text{initial, A}}}{g}.
\end{aligned}$$
After the ball hits the wall, what happens is described by the problem: the velocity component parallel to the wall doesn't change, while the one perpendicular to the wall changes by a factor of ##(-k)##. Since the velocity component parallel to the wall is the vertical component, then the vertical component of velocity doesn't change; thus, its magnitude is ##u_y^{\text{final, B}} = 0##. Since the velocity component perpendicular to the wall is the horizontal component, then the horizontal component of velocity is reversed and decreased; thus, from ##u_x^{\text{initial, B}}## it becomes ##u_x^{\text{final, B}} = -k \, u_x^{\text{initial, B}}##, with ##0 < k < 1##. The ball falls from height ##H = \dfrac{{u_y^2}^{\text{initial, A}}}{2g}## and again takes time ##t_{\text{descent}}= t_{\text{ascent}}=\dfrac{u_y^{\text{initial, A}}}{g}## to drop. During the fall from ##\text{B}## to ##\text{C}##, the ball moves horizontally by a distance
$$\begin{aligned}
D_{\text{BC}} &= k \, u_x^{\text{initial, A}} \, t_{\text{descent}} \\
&= k \, \underbrace{u_x^{\text{initial, A}} \frac{u_y^{\text{initial, A}}}{g}}_{= \, D_{\text{AB}}}\\
&= k \, D_{\text{AB}}.
\end{aligned}$$
The ball lands at point ##\text C##, which is at a horizontal distance from ##\text A## equal to
$$\begin{aligned}
D_{\text{AC}} &= D_{\text{AB}} - D_{\text{BC}} \\
&= D_{\text{AB}} - k \, D_{\text{AB}} \\
&= D_{\text{AB}} \, (1-k).
\end{aligned}$$
Then, $$D_{\text{AC}} = D_{\text{AB}} \, (1-k).$$
After the ball hits the ground, what happens is described by the problem: the velocity component parallel to the wall doesn't change, while the one perpendicular to the wall changes by a factor of ##(-k)##. Since the velocity component parallel to the gound is the horizontal component, then the horizontal component of velocity doesn't change; thus, it is ##u_x^{\text{initial, C}} = u_x^{\text{final, B}} = - k \, u_x^{\text{initial, A}}##. Since the velocity component perpendicular to the ground is the vertical component, then the vertical component of velocity is reversed and decreased; thus, from ##u_y^{\text{final, B}} = 0## it becomes ##u_y^{\text{initial, C}} = - k \, u_y^{\text{initial, A}}##, with ##0 < k < 1##.
I'm not sure about that.
a) From here, repeated parabolic trajectories start. After each bounce on the ground, vertical component of speed is multiplied by ##k##, horizontal component of velocity remains constant in magnitude.
If we number such paths with ##j=0, 1, 2, \ldots, N-1## starting from point ##\text C##:
1) time of flight of the ball is
$$\begin{cases}
t_0 = 2 \dfrac{k \, u_y^{\text{initial, A}}}{g} \quad &\text{for the first parabola} \,\, j=0 \,\, \text{from point C to point D}\\
t_1 = 2 \dfrac{k \cdot (k \, u_y^{\text{initial, A}})}{g} = 2 \dfrac{k^2 \, u_y^{\text{initial, A}}}{g} \quad &\text{for the second parabola} \,\, j=1 \,\, \text{from point D to point E} \\
t_2 = 2 \dfrac{k \cdot (k \cdot k \, u_y^{\text{initial, A}})}{g} = 2 \dfrac{k^3 \, u_y^{\text{initial, A}}}{g} \quad &\text{for the third parabola} \,\, j=2 \,\, \text{from point E to point F} \\
\qquad \qquad \vdots \\
t_j = 2 \dfrac{k \cdot (\underbrace{k \cdot k \cdot \, \cdots \, \cdot k}_{j \, \text{times}} \, \, u_y^{\text{initial, A}})}{g} = 2 \dfrac{k^{j+1} \, u_y^{\text{initial, A}}}{g} \quad &\text{for the last parabola} \,\, j \,\, \text{from last point of impact to point A}.
\end{cases}$$
Then $$t_j = 2 \frac{k^{j+1} \, u_y^{\text{initial, A}}}{g} \qquad \text{for} \quad j=0, 1, 2, \ldots, N-1.$$
2) the horizontal displacement of the ball is
$$\begin{aligned}
x_j &= k \, u_x^{\text{initial, A}} \cdot t_j \\
&= k \, u_x^{\text{initial, A}} \cdot 2 \frac{k^{j+1} \, u_y^{\text{initial, A}}}{g} \\
&= 2 \, k^{j+2} \, \underbrace{u_x^{\text{initial, A}} \frac{u_y^{\text{initial, A}}}{g}}_{= \, D_{\text{AB}}} \\
&= 2 \, k^{j+2} \, D_{\text{AB}}.
\end{aligned}$$
Then $$x_j = 2 \, k^{j+2} \, D_{AB} \qquad \text{for} \quad j=0, 1, 2, \ldots, N-1.$$
The sum of horizontal displacements ##x_j## from ##j=0## to ##j=N-1## must then be equal to ##D_{\text{AC}}##. Thus:
$$\begin{aligned}
\sum_{j=0}^{N-1}x_j = D_{\text{AC}} &\implies \sum_{j=0}^{N-1} 2 \,k^{j+2} \, D_{\text{AB}} = D_{\text{AB}} \, (1-k) \\
&\iff D_{\text{AB}}\sum_{j=0}^{N-1} 2 \,k^{j+2} \, = D_{\text{AB}} \, (1-k) \\
&\iff \cancel{D_{\text{AB}}}\sum_{j=0}^{N-1} 2 \,k^{j+2} \, = \cancel{D_{\text{AB}}} \, (1-k) \\
&\iff \sum_{j=0}^{N-1} 2 \,k^{j+2} = 1 - k \\
&\iff \sum_{j=0}^{N-1} 2 \,k^{2} \, k^j = 1- k \\
&\iff 2 \, k^2 \sum_{j=0}^{N-1} k^j = 1 - k \\
&\implies 2 \, k^2 \left(\frac{1-k^N}{1-k}\right) = 1 - k \\
&\iff 2 \, k^2 \frac{1-k^N}{1-k} = 1-k \\
&\iff 2 \, k^2 (1-k^N) = (1-k)^2 \qquad \qquad \text{for} \quad k \ne 1, \, N \ne 0 \\
&\iff 2 \, k^2 - 2 \, k^{N+2} = k^2 - 2 \, k + 1 \\
&\iff k^2 + 2 \, k - 1 = 2 \, k^{N+2}.
\end{aligned}$$
Then: $$k^2 + 2 \, k - 1 = 2 \, k^{N+2} \qquad \text{for} \quad k \ne 1, \, N \ne 0. \tag{*}$$
For ##N = 1##, we have:
$$\begin{aligned}
k^2 + 2 \, k - 1 = 2 \, k^{1+2} &\iff k^2 + 2 \, k - 1 = 2 \, k^{3} \\
&\iff 2 \, k^3 - k^2 - 2k + 1 = 0 \\
&\iff 2 \, k \, (k^2-1) - 1 (k^2-1) =0 \\
&\iff (2 \, k -1)(k^2-1) = 0 \\
&\iff (2 \, k -1)\ \underbrace{\cancel{(k-1)}}_{\text{since} \, k \, \ne \, 1} \, \,\underbrace{\cancel{(k+1)}}_{\text{since} \, 0 \, < \, k \, < \, 1}=0 \\
&\iff 2 \, k - 1 = 0 \\
&\iff k= 1/2.
\end{aligned}$$
So, ##k = 1/2## for ##N=1##.
For ##N \geqslant 2##, I really don't know how to solve Equation ##(*)##.
For ##N \to \infty##, we have
$$\begin{aligned}
\lim_{n \to \infty} \left(k^2 + 2 \, k - 1 \right)= \lim_{n \to \infty}2 \, k^{N+2} &\iff k^2 + 2 \, k -1 = 2 \, k^2 \lim_{n \to \infty} k^{N} \\
&\iff k^2 + 2 \, k -1 = 2 \lim_{n \to \infty} k^{N} k^2 \\
&\iff k^2 + 2 \, k -1 = 2 \, k^2 \underbrace{\lim_{n \to \infty} k^{N}}_{= \, 0 \, \text{since} \, 0 \, < \, k \, < \, 1} \\
&\iff k^2 + 2 \, k -1 = 2 \, k^2 \cdot 0 \\
&\iff k^2 + 2 \, k -1 = 0 \\
&\iff \underbrace{\cancel{k = - \sqrt 2 - 1}}_{\text{because} \, 0 \, < \, k \, < \, 1} \quad \vee \quad k = \sqrt 2 - 1 \\
&\iff k = \sqrt 2 - 1.
\end{aligned}$$
So, $$\boxed{k= \sqrt 2 - 1 \qquad \text{for} \quad N \to \infty}.$$
b) The total time the ball is in the air is equal to the time of the first two trajectories ##\text A \to \text B## (which is equal to ##t_{\text{ascent}}=\dfrac{u_y^{\text{initial, A}}}{g}## + ##t_{\text{descent}}=\dfrac{u_y^{\text{initial, A}}}{g}##) plus the sum of the trajectory times of the next ##N## parabolas. Then:
$$\begin{aligned}
T(N) &= t_{\text{ascent}} + t_{\text{descent}} + \sum_{j=0}^{N-1} t_j\\
&= \frac{u_y^{\text{initial, A}}}{g} + \frac{u_y^{\text{initial, A}}}{g} + \sum_{j=0}^{N-1} 2 \frac{k^{j+1} \, u_y^{\text{initial, A}}}{g} \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} + 2 \frac{u_y^{\text{initial, A}}}{g} \sum_{j=0}^{N-1} k^{j+1} \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} + 2 \frac{u_y^{\text{initial, A}}}{g} \sum_{j=0}^{N-1} k^{j} \cdot k \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} + 2 \frac{u_y^{\text{initial, A}}}{g} k\sum_{j=0}^{N-1} k^{j} \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} + 2 \frac{u_y^{\text{initial, A}}}{g} k \frac{1-k^N}{1-k} \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} \left(1+ k \frac{1-k^N}{1-k}\right) \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} \left[\frac{1-k+k \left(1-k^N \right)}{1-k}\right] \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} \left[\frac{1-k+k-k^{N+1}}{1-k}\right] \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} \left[\frac{1 \cancel{-k}\cancel{+k}-k^{N+1}}{1-k}\right] \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} \left(\frac{1-k^{N+1}}{1-k}\right). \\
\end{aligned}$$
Finally, $$\boxed{T(N) = 2 \frac{u_y^{\text{initial, A}}}{g} \left(\frac{1-k^{N+1}}{1-k}\right)}.$$
For ##N \to \infty##, we have
\begin{aligned}
\lim_{N \to \infty} T(N) &= \lim_{N \to \infty}2 \frac{u_y^{\text{initial, A}}}{g} \left(\frac{1-k^{N+1}}{1-k}\right)\\
&= 2 \frac{u_y^{\text{initial, A}}}{g} \lim_{N \to \infty}\left(\frac{1-k^{N+1}}{1-k}\right) \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} \frac{1}{1-k}\lim_{N \to \infty} \left(1- k^{N+1}\right) \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} \frac{1}{1-k} \left(\lim_{N \to \infty} 1 - \lim_{N \to \infty} k^{N+1}\right) \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} \frac{1}{1-k} \left(1 - \lim_{N \to \infty} k^{N+1}\right) \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} \frac{1}{1-k} \left(1 - \lim_{N \to \infty} k \cdot k^{N} \right) \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} \frac{1}{1-k} \left(1 - k \underbrace{\lim_{N \to \infty} k^{N}}_{= \, 0 \, \text{since} \, 0 \, < \, k \, < \, 1} \right) \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} \frac{1}{1-k} \cancelto{1}{\left(1 - k \cdot 0 \right)} \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} \frac{1}{1-k}.
\end{aligned}
So, $$\lim_{N \to \infty} T(N) = 2 \frac{u_y^{\text{initial, A}}}{g} \frac{1}{1-k}. \tag{**}$$
Since ##k = \sqrt 2 - 1## for ##N \to \infty##, plugging that value into ##(**)## yields:
$$\begin{aligned}
\lim_{N \to \infty} T(N) &= 2 \frac{u_y^{\text{initial, A}}}{g} \frac{1}{1- \left(\sqrt 2 -1 \right)} \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} \frac{1}{1- \sqrt 2 + 1} \\
&= 2 \frac{u_y^{\text{initial, A}}}{g} \frac{1}{2- \sqrt 2 } \\
&= 2 \frac{2+\sqrt 2}{\left(2- \sqrt 2 \right) \left(2+ \sqrt 2 \right)} \frac{u_y^{\text{initial, A}}}{g} \\
&= 2 \frac{2+\sqrt 2}{4-2} \frac{u_y^{\text{initial, A}}}{g} \\
&= 2 \frac{2+\sqrt 2}{2} \frac{u_y^{\text{initial, A}}}{g} \\
&= \cancel{2} \frac{2+\sqrt 2}{\bcancel{2}} \frac{u_y^{\text{initial, A}}}{g} \\
&= \left(2+\sqrt 2\right) \frac{u_y^{\text{initial, A}}}{g}.
\end{aligned}$$
Finally, $$\boxed{T(N) = \left(2+\sqrt 2\right) \frac{u_y^{\text{initial, A}}}{g} \qquad \text{for} \quad N \to \infty}.$$