What Is the Inner Product <V,s> in Complex Vector Projections?

Click For Summary
SUMMARY

The discussion centers on the projection of a complex vector s onto a column of a complex matrix V, specifically addressing the formula c = /||V(j)||^2. The term refers to the inner product of the entire matrix V with the vector s, while V(j) denotes a specific column of V. The participants clarify that for the inner product to be valid, both vectors must belong to the same vector space, which raises questions when n does not equal m. The conversation emphasizes the distinction between vectors as ordered sets of numbers and their broader definition within vector spaces.

PREREQUISITES
  • Understanding of complex vector spaces
  • Familiarity with inner product definitions in linear algebra
  • Knowledge of matrix dimensions and their implications
  • Basic concepts of projections in vector spaces
NEXT STEPS
  • Study the properties of inner products in complex vector spaces
  • Learn about projections of vectors in higher-dimensional spaces
  • Explore the implications of matrix dimensions in linear transformations
  • Investigate the role of Hermitian matrices in complex vector projections
USEFUL FOR

Mathematicians, physicists, and computer scientists working with complex vector spaces, as well as students studying linear algebra and its applications in various fields.

polaris90
Messages
45
Reaction score
0
I need some clarification on projections of complex vectors. If I have a nxm matrix of complex numbers V and a mx1 matrix s, and I want to find the projection of s onto any column of V. The formula to do this is

c = <V, s>/||V(j)||^2 where V(j) is the column of V to be used. My question is, what is <V,s>? is that the inner product of the whole matrix V with s, or is it the inner product of V(j) with s? Where V or V(j) would be the Hermition of the vector.
 
Physics news on Phys.org
Where did you find this formula? I'm only familiar with projections of vectors onto other vectors and onto subspaces. I have no idea what <V,s> means, or what the projection of s onto V(j) means, since V(j) isn't a member of the same vector space as s.
 
I see I wasn't clear on my question. What I meant is the projection of vector vector s onto a vector V. By V(j) I meant a column of matrix V. <V, s> is the inner product of V and s. I know about projections of one vector onto another vector when they are all real numbers. In this case, I have a matrix V with complex numbers. I want to project s onto a column of V. I hope my question is clearer now.
 
But if V is an n×m matrix and s is not, how can you be talking about the inner product of V and s? An inner product takes two members of a vector space (the same vector space) to a number, but V and s aren't in the same vector space. Also, if s is m×1, and V(j) is n×1, they're not in the same vector space either (unless of course n=m).

Another thing: You seem to be thinking of "vectors" as ordered sets of numbers. That's not always the case. The members of any vector space are called vectors. A vector space V is considered "complex" when the scalar multiplication operation is a function from V×ℂ into V. There are real vector spaces whose members are matrices with complex entries.
 
Last edited:
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K