I The tensor product of tensors confusion

  • #31
The standard definition of tensor product of two vector spaces (perhaps infinite dimensional) is as follows. let ##E,F## be vector spaces (say over ##\mathbb{R}##) and let ##B(E,F)## be a space of bilinear functions ##f:E\times F\to \mathbb{R}##.

Define a mapping ##u_{xy}:B(E,F)\to \mathbb{R}## as follows
##u_{xy}(f)=f(x,y)## so that ##u_{xy}\in (B(E,F))^*.## We have also got a bilinear mapping
$$\chi:E\times F\to (B(E,F))^*,\quad \chi(x,y)=u_{xy}.$$
By definition the tensor product ##E\otimes F## is the linear span of $$\chi(E\times F);\quad x\otimes y:=u_{xy}.$$

The main feature is as follows. Any bilinear function ##A:E\times F\to W## (W is some other vector space) can be presented as follows ##A=\tilde A\chi ##
here ##\tilde A:E\otimes F\to W## is a linear mapping.
 
Last edited:
  • Like
Likes GR191511
Physics news on Phys.org
  • #32
wrobel said:
The standard definition of tensor product of two vector spaces (perhaps infinite dimensional) is as follows. let ##E,F## be vector spaces (say over ##\mathbb{R}##) and let ##B(E,F)## be a space of bilinear functions ##f:E\times F\to \mathbb{R}##.

Define a mapping ##u_{xy}:B(E,F)\to \mathbb{R}## as follows
##u_{xy}(f)=f(x,y)## so that ##u_{xy}\in (B(E,F))^*.## We have also got a bilinear mapping
$$\chi:E\times F\to (B(E,F))^*,\quad \chi(x,y)=u_{xy}.$$
By definition the tensor product ##E\otimes F## is the linear span of $$\chi(E\times F);\quad x\otimes y:=u_{xy}.$$

The main feature is as follows. Any bilinear function ##A:E\times F\to W## (W is some other vector space) can be presented as follows ##A=\tilde A\chi ##
here ##\tilde A:E\otimes F\to W## is a linear mapping.
Thanks
 
  • #33
In a general sense, the tensor product of two vector spaces ##V, W ## over the same field is a third vector space ##V \otimes W##, whose dimension is the product of those of ##V, W ##and so that every bilinear map from ## V \times W \rightarrow Z ## , becomes a linear map from ## V\otimes W \rightarrow Z ##, for ##Z## any vector space.
Idea is to transform multilinear maps into linear ones, as the latter are simpler and easier to deal with.
 
Last edited:
  • Like
Likes wrobel and weirdoguy

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K