wrobel
Science Advisor
- 1,189
- 1,013
The standard definition of tensor product of two vector spaces (perhaps infinite dimensional) is as follows. let ##E,F## be vector spaces (say over ##\mathbb{R}##) and let ##B(E,F)## be a space of bilinear functions ##f:E\times F\to \mathbb{R}##.
Define a mapping ##u_{xy}:B(E,F)\to \mathbb{R}## as follows
##u_{xy}(f)=f(x,y)## so that ##u_{xy}\in (B(E,F))^*.## We have also got a bilinear mapping
$$\chi:E\times F\to (B(E,F))^*,\quad \chi(x,y)=u_{xy}.$$
By definition the tensor product ##E\otimes F## is the linear span of $$\chi(E\times F);\quad x\otimes y:=u_{xy}.$$
The main feature is as follows. Any bilinear function ##A:E\times F\to W## (W is some other vector space) can be presented as follows ##A=\tilde A\chi ##
here ##\tilde A:E\otimes F\to W## is a linear mapping.
Define a mapping ##u_{xy}:B(E,F)\to \mathbb{R}## as follows
##u_{xy}(f)=f(x,y)## so that ##u_{xy}\in (B(E,F))^*.## We have also got a bilinear mapping
$$\chi:E\times F\to (B(E,F))^*,\quad \chi(x,y)=u_{xy}.$$
By definition the tensor product ##E\otimes F## is the linear span of $$\chi(E\times F);\quad x\otimes y:=u_{xy}.$$
The main feature is as follows. Any bilinear function ##A:E\times F\to W## (W is some other vector space) can be presented as follows ##A=\tilde A\chi ##
here ##\tilde A:E\otimes F\to W## is a linear mapping.
Last edited: