I'd like to know if this indeed proves that between any 2 reals is an irrational.(adsbygoogle = window.adsbygoogle || []).push({});

Choose two reals A and B, B>A. There are two cases of B: B is irrational or B is rational. Assume B is irrational. Then [itex] B- \frac{1}{n} [/itex] (n is a natural number) is irrational. You can get as close as you like to B by taking n sufficienly large. Thus, between a real A and an irrational B, an irrational.

Next, assume B is rational. Then, [itex] B- \frac{\pi}{n} [/itex] is irrational. By making n sufficiently large you can get as close as you like to B. Thus, between a real A and a rational B, there is always an irrational.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Proof: between 2 reals is an irrational

**Physics Forums | Science Articles, Homework Help, Discussion**