Proof involving exponential of anticommuting operators

Click For Summary
SUMMARY

This discussion focuses on proving relationships involving exponential functions of anticommuting operators, specifically for cases where ##N>1##. The user successfully demonstrated that for ##N=1##, the relationship $$\langle\psi |b_k^\dagger=-\langle 0 | \sum_{n=1}^N F_{kn}c_n \prod_{m=1\neq k, l}^N \left(1+b_m F_{ml}c_l \right)$$ holds true. However, extending this proof to ##N>1## has proven challenging, particularly when applying the exponential form $$e^{bFc}=e^{\sum_{ij}b_i F_{ij} c_j}=\prod_{ij}(1+b_iF_{ij}c_j)$$ from Fradkin's "Quantum Field Theory: An Integrated Approach". The user seeks guidance or references to assist in overcoming these difficulties.

PREREQUISITES
  • Understanding of anticommuting operators in quantum mechanics
  • Familiarity with exponential functions of operators
  • Knowledge of Grassmann variables and their properties
  • Experience with quantum field theory, particularly Fradkin's approach
NEXT STEPS
  • Study the properties of Grassmann variables in quantum field theory
  • Review Fradkin's "Quantum Field Theory: An Integrated Approach" for insights on operator exponentials
  • Explore advanced techniques in proving relationships involving anticommuting operators
  • Investigate the implications of non-trivial anticommutation relations in quantum mechanics
USEFUL FOR

This discussion is beneficial for theoretical physicists, quantum field theorists, and graduate students working on problems involving anticommuting operators and their applications in quantum mechanics.

Joker93
Messages
502
Reaction score
37
Homework Statement
The problem is to prove equation (5.31) from the book "Quarks, gluons and lattices" by Creutz. It involves anticommuting operators and functions of them acting on defined states, which I give below.
Relevant Equations
On page 23 of the book "Quarks, gluons and lattices" by Creutz, he defines a state
$$\langle\psi|=\langle 0|e^{bFc}e^{\lambda b^\dagger G c^\dagger}$$
where ##\lambda## is a number, ##F, G## are ##N\times N## symmetric matrices and ##b, c## are vectors whose components ##b_m, c_m## are operators such that their anticommutators satisfy
$$\{b_m^\dagger, b_n\}=\{c_m^\dagger, c_n\}=\delta_{mn}$$
with every other anti-commutator being zero, and the state ##\langle 0 |## such that
$$\langle 0 |c^\dagger_m=\langle 0 |b^\dagger_m=0$$
Creutz says that a straightfoward calculation can lead us to proving that
$$\langle\psi|b^\dagger=-\langle\psi|(F^{-1}-\lambda G)^{-1} c=-\langle\psi|(1-\lambda FG)^{-1}Fc$$
For ##N=1##, I have managed to prove this, but for ##N>1##, I am struggling with how to show this. Something that I managed to prove is that
$$\langle\psi |b_k^\dagger=-\langle 0 | \sum_{n=1}^N F_{kn}c_n \prod_{m=1\neq k, l}^N \left(1+b_m F_{ml}c_l \right)$$
which generalizes what I initially found for the ##N=1## case, which is ##\langle\psi|b^\dagger=-\langle 0|Fc##. For this last result for the ##N=1## case, I then substituted ##\langle 0 |=\langle \psi | e^{-\lambda b^\dagger G c^\dagger}e^{-bFc}##, and after some manipulations, I reached the end of the proof. Doing something similar for the ##N>1## case, I found it too difficult to get to a meaningful result (or even close to the final result).

Note that for the ##N>1## case, I have used that, for example,
$$e^{bFc}=e^{\sum_{ij}b_i F_{ij} c_j}=\prod_{ij}(1+b_iF_{ij}c_j)$$
which is found on page 193 of Fradkin's book "Quantum Field theory: an integrated approach". Note that there, Fradkin was talking about Grassmann variables being on the exponential, whereas here we have the above non-trivial anticommutation relations; so, this might have been where I got it wrong.

If anybody can give a hint or some guidance on this, or even provide with some reference that can help, it would be greatly appreciated.
 
Physics news on Phys.org
Note that I have proved that the last relation holds.
If anybody could help with the problem by just even a suggestion, It would be appreciated.
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K