Proof of Chain Rule: Understanding the Limits

Click For Summary
SUMMARY

The discussion focuses on the proof of the Chain Rule in calculus, specifically addressing the continuity and differentiability of functions. It establishes that if \( f \) is differentiable at \( u = g(x) \) and \( g \) is differentiable at \( x \), then the derivative of the composition \( f(g(x)) \) is given by \( f'(g(x))g'(x) \). Key points include the continuity of \( E(k) \) at \( k=0 \) and the behavior of limits as \( h \) approaches 0. The participants clarify misconceptions about limits involving \( E(k) \) and the constancy of \( f'(g(x)) \) during the limit process.

PREREQUISITES
  • Understanding of limits and continuity in calculus
  • Knowledge of differentiable functions and their properties
  • Familiarity with the Chain Rule in calculus
  • Basic algebraic manipulation of limits and derivatives
NEXT STEPS
  • Study the formal definition of the Chain Rule in calculus
  • Explore the concept of continuity and differentiability in depth
  • Learn about the application of limits in calculus, particularly in derivatives
  • Investigate examples of differentiable functions and their derivatives
USEFUL FOR

Students of calculus, mathematics educators, and anyone seeking to deepen their understanding of the Chain Rule and its applications in differentiable functions.

mcastillo356
Gold Member
Messages
658
Reaction score
361
TL;DR
I've got a proof of the Chain Rule, but basic questions about basic steps
First I quote the text, and then the attempts to solve the doubts:

"Proof of the Chain Rule

Be ##f## a differentiable function at the point ##u=g(x)##, with ##g## a differentiable function at ##x##. Be the function ##E(k)## described this way:
$$E(0)=0$$
$$E(k)=\dfrac{f(u+k)-f(u)}{k}-f'(u)\qquad\mbox{if}\;k\neq 0$$

By definition of derivative, ##\lim_{k \to{0}}{E(k)}=f'(u)-f'(u)=0=E(0)##, so ##E(k)## is continuous in ##k=0##. Also, be ##k=0## or not, we have

$$f(u+k)-f(u)=(f'(u)+E(k))k$$

Be now ##u=g(x)## and ##k=g(x+h)-g(x)##, so ##u+k=g(x+h)##; we obtain

$$f(g(x+h))-f(g(x))=(f'(g(x))+E(k))(g(x+h)-g(x))$$

As ##g## is differentiable at ##x##, ##\lim_{h \to{0}}{[g(x+h)-g(x)]/h}=g'(x)##. Also, ##g## is continuous at ##x##, by Theorem 1
THEOREM 1 Being differentiable means being continous

If ##f## is differentiable at ##x##, we know it exists

$$\displaystyle\lim_{h \to{0}}{\dfrac{f(x+h)-f(x)}{h}}=f'(x)$$

Using the rules of limits (Theorem 2 of section 1.2)

Rules for limits

If ##\lim_{x \to a}{f(x)}=L##, ##\lim_{x \to a}{g(x)}=M##, and ##k## is a constant, then

1. Limit of a sum: ##\displaystyle\lim_{x \to{a}}{[f(x)+g(x)]}=L+M##
2. Limit of a subtraction: ##\displaystyle\lim_{x \to{a}}{[f(x)+g(x)]}=L+M##
3. Limit of a product: ##\displaystyle\lim_{x \to{a}}{f(x)g(x)}=LM##
4. Limit of a function multiplied by a constant: ##\displaystyle\lim_{x \to{a}}{kf(x)}=kL##
5. Limit of a division: ##\displaystyle\lim_{x \to a}{\dfrac{f(x)}{g(x)}}=\dfrac{L}{M}\qquad\mbox{if}\;M\neq 0##
If ##m## is an integer and ##n## a positive integer, then
6. Limit of a power: ##\displaystyle\lim_{x \to{a}}{[f(x)]^{m/n}}=L^{m/n}##, whenever ##L>0## if ##n## is even, and ##L\neq 0## if ##m<0##
If ##f(x)\geq g(x)## at an interval that contains ##a## inside, then
7. Order preservation: ##L\geq M##

we have

$$\lim_{h \to{0}}{f(x+h)-f(x))}=\lim_{h \to{0}}{\left (\dfrac{f(x+h)-f(x)}{h}\right)(h)}=(f'(x))(0)=0$$

This is equivalent to ##\lim_{h \to{0}}{f(x+h)=f(x)}##, and means ##f## is continous.So ##\lim_{h \to{0}}{E(k)}=\lim_{h \to{0}}{(g(x+h)-g(h)=0}##. As ##E## is continuous in 0, ##\lim_{h \to{0}}{E(k)}=\lim_{k \to{0}}{E(k)}=E(0)=0##. This way,

$$\dfrac{d}{dx}f(g(x))=\displaystyle\lim_{h \to{0}}{\dfrac{f(g(x+h))-f(g(x))}{h}}$$

$$ \qquad\qquad\qquad=\displaystyle\lim_{h \to{0}}{(f'(g(x)+E(k))\dfrac{g(x+h)-g(x)}{h}}$$

$$\qquad\qquad\qquad=(f'(g(x)+0)g(x)=f'(g(x))g'(x)$$

As we wanted to prove."

Doubts:

-¿##\lim_{h \to{0}}{E(k)}=\lim_{k \to{0}}{E(k)}##?

Attempt: ##\lim_{h \to{0}}{E(k)}=\displaystyle\lim_{h \to{0}}{\dfrac{E(k+h)-E(k)}{h}}=\displaystyle\lim_{k \to{0}}{\dfrac{E(k)-E(0)}{k-0}}## (Bad, I guess)

-¿Why ##f'(g(x))## remains the same at the last step?:

$$ \qquad\qquad\qquad=\displaystyle\lim_{h \to{0}}{(f'(g(x)+E(k))\dfrac{g(x+h)-g(x)}{h}}$$

$$\qquad\qquad\qquad=(f'(g(x)+0)g(x)=f'(g(x))g'(x)$$

Attempt: are different variables

Greetings to everybody, have a nice St Joseph's Day!
 
  • Like
Likes   Reactions: annabrown
Physics news on Phys.org
mcastillo356 said:
-¿limh→0E(k)=limk→0E(k)?
No. ##\lim_{h \to 0} E(k) = E(k)##, since E(k) doesn't involve h in any way.

For the same reason, if f(x) = 2x + 3, ##\lim_{z \to 19} f(x) = f(x)##
 
  • Love
Likes   Reactions: mcastillo356
Thanks!
Greetings
 
mcastillo356 said:
-¿Why f′(g(x)) remains the same at the last step?:
For the same reason as before -- f'(g(x)) doesn't involve h, so in the limit process (with h approaching 0), f'(g(x)) is unaffected.
 
  • Like
Likes   Reactions: mcastillo356

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K