B Proof of Chain Rule: Understanding the Limits

mcastillo356
Gold Member
Messages
634
Reaction score
342
TL;DR Summary
I've got a proof of the Chain Rule, but basic questions about basic steps
First I quote the text, and then the attempts to solve the doubts:

"Proof of the Chain Rule

Be ##f## a differentiable function at the point ##u=g(x)##, with ##g## a differentiable function at ##x##. Be the function ##E(k)## described this way:
$$E(0)=0$$
$$E(k)=\dfrac{f(u+k)-f(u)}{k}-f'(u)\qquad\mbox{if}\;k\neq 0$$

By definition of derivative, ##\lim_{k \to{0}}{E(k)}=f'(u)-f'(u)=0=E(0)##, so ##E(k)## is continuous in ##k=0##. Also, be ##k=0## or not, we have

$$f(u+k)-f(u)=(f'(u)+E(k))k$$

Be now ##u=g(x)## and ##k=g(x+h)-g(x)##, so ##u+k=g(x+h)##; we obtain

$$f(g(x+h))-f(g(x))=(f'(g(x))+E(k))(g(x+h)-g(x))$$

As ##g## is differentiable at ##x##, ##\lim_{h \to{0}}{[g(x+h)-g(x)]/h}=g'(x)##. Also, ##g## is continuous at ##x##, by Theorem 1
THEOREM 1 Being differentiable means being continous

If ##f## is differentiable at ##x##, we know it exists

$$\displaystyle\lim_{h \to{0}}{\dfrac{f(x+h)-f(x)}{h}}=f'(x)$$

Using the rules of limits (Theorem 2 of section 1.2)

Rules for limits

If ##\lim_{x \to a}{f(x)}=L##, ##\lim_{x \to a}{g(x)}=M##, and ##k## is a constant, then

1. Limit of a sum: ##\displaystyle\lim_{x \to{a}}{[f(x)+g(x)]}=L+M##
2. Limit of a subtraction: ##\displaystyle\lim_{x \to{a}}{[f(x)+g(x)]}=L+M##
3. Limit of a product: ##\displaystyle\lim_{x \to{a}}{f(x)g(x)}=LM##
4. Limit of a function multiplied by a constant: ##\displaystyle\lim_{x \to{a}}{kf(x)}=kL##
5. Limit of a division: ##\displaystyle\lim_{x \to a}{\dfrac{f(x)}{g(x)}}=\dfrac{L}{M}\qquad\mbox{if}\;M\neq 0##
If ##m## is an integer and ##n## a positive integer, then
6. Limit of a power: ##\displaystyle\lim_{x \to{a}}{[f(x)]^{m/n}}=L^{m/n}##, whenever ##L>0## if ##n## is even, and ##L\neq 0## if ##m<0##
If ##f(x)\geq g(x)## at an interval that contains ##a## inside, then
7. Order preservation: ##L\geq M##

we have

$$\lim_{h \to{0}}{f(x+h)-f(x))}=\lim_{h \to{0}}{\left (\dfrac{f(x+h)-f(x)}{h}\right)(h)}=(f'(x))(0)=0$$

This is equivalent to ##\lim_{h \to{0}}{f(x+h)=f(x)}##, and means ##f## is continous.So ##\lim_{h \to{0}}{E(k)}=\lim_{h \to{0}}{(g(x+h)-g(h)=0}##. As ##E## is continuous in 0, ##\lim_{h \to{0}}{E(k)}=\lim_{k \to{0}}{E(k)}=E(0)=0##. This way,

$$\dfrac{d}{dx}f(g(x))=\displaystyle\lim_{h \to{0}}{\dfrac{f(g(x+h))-f(g(x))}{h}}$$

$$ \qquad\qquad\qquad=\displaystyle\lim_{h \to{0}}{(f'(g(x)+E(k))\dfrac{g(x+h)-g(x)}{h}}$$

$$\qquad\qquad\qquad=(f'(g(x)+0)g(x)=f'(g(x))g'(x)$$

As we wanted to prove."

Doubts:

-¿##\lim_{h \to{0}}{E(k)}=\lim_{k \to{0}}{E(k)}##?

Attempt: ##\lim_{h \to{0}}{E(k)}=\displaystyle\lim_{h \to{0}}{\dfrac{E(k+h)-E(k)}{h}}=\displaystyle\lim_{k \to{0}}{\dfrac{E(k)-E(0)}{k-0}}## (Bad, I guess)

-¿Why ##f'(g(x))## remains the same at the last step?:

$$ \qquad\qquad\qquad=\displaystyle\lim_{h \to{0}}{(f'(g(x)+E(k))\dfrac{g(x+h)-g(x)}{h}}$$

$$\qquad\qquad\qquad=(f'(g(x)+0)g(x)=f'(g(x))g'(x)$$

Attempt: are different variables

Greetings to everybody, have a nice St Joseph's Day!
 
Mathematics news on Phys.org
mcastillo356 said:
-¿limh→0E(k)=limk→0E(k)?
No. ##\lim_{h \to 0} E(k) = E(k)##, since E(k) doesn't involve h in any way.

For the same reason, if f(x) = 2x + 3, ##\lim_{z \to 19} f(x) = f(x)##
 
  • Love
Likes mcastillo356
Thanks!
Greetings
 
mcastillo356 said:
-¿Why f′(g(x)) remains the same at the last step?:
For the same reason as before -- f'(g(x)) doesn't involve h, so in the limit process (with h approaching 0), f'(g(x)) is unaffected.
 
  • Like
Likes mcastillo356
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
12
Views
848
Replies
11
Views
2K
Replies
7
Views
2K
Replies
4
Views
1K
Replies
2
Views
2K
Replies
2
Views
2K
Back
Top