B Proof of Chain Rule: Understanding the Limits

Click For Summary
The discussion focuses on the proof of the Chain Rule in calculus, demonstrating how the derivative of a composite function is derived. The function E(k) is defined, and its continuity at k=0 is established, leading to the conclusion that the derivative of f(g(x)) can be expressed as f'(g(x))g'(x). Participants clarify doubts about the limits involving E(k) and the constancy of f'(g(x)) during the limit process, emphasizing that E(k) does not depend on h and that f'(g(x)) remains unchanged as h approaches 0. The conversation concludes with affirmations of understanding regarding these mathematical concepts.
mcastillo356
Gold Member
Messages
643
Reaction score
351
TL;DR
I've got a proof of the Chain Rule, but basic questions about basic steps
First I quote the text, and then the attempts to solve the doubts:

"Proof of the Chain Rule

Be ##f## a differentiable function at the point ##u=g(x)##, with ##g## a differentiable function at ##x##. Be the function ##E(k)## described this way:
$$E(0)=0$$
$$E(k)=\dfrac{f(u+k)-f(u)}{k}-f'(u)\qquad\mbox{if}\;k\neq 0$$

By definition of derivative, ##\lim_{k \to{0}}{E(k)}=f'(u)-f'(u)=0=E(0)##, so ##E(k)## is continuous in ##k=0##. Also, be ##k=0## or not, we have

$$f(u+k)-f(u)=(f'(u)+E(k))k$$

Be now ##u=g(x)## and ##k=g(x+h)-g(x)##, so ##u+k=g(x+h)##; we obtain

$$f(g(x+h))-f(g(x))=(f'(g(x))+E(k))(g(x+h)-g(x))$$

As ##g## is differentiable at ##x##, ##\lim_{h \to{0}}{[g(x+h)-g(x)]/h}=g'(x)##. Also, ##g## is continuous at ##x##, by Theorem 1
THEOREM 1 Being differentiable means being continous

If ##f## is differentiable at ##x##, we know it exists

$$\displaystyle\lim_{h \to{0}}{\dfrac{f(x+h)-f(x)}{h}}=f'(x)$$

Using the rules of limits (Theorem 2 of section 1.2)

Rules for limits

If ##\lim_{x \to a}{f(x)}=L##, ##\lim_{x \to a}{g(x)}=M##, and ##k## is a constant, then

1. Limit of a sum: ##\displaystyle\lim_{x \to{a}}{[f(x)+g(x)]}=L+M##
2. Limit of a subtraction: ##\displaystyle\lim_{x \to{a}}{[f(x)+g(x)]}=L+M##
3. Limit of a product: ##\displaystyle\lim_{x \to{a}}{f(x)g(x)}=LM##
4. Limit of a function multiplied by a constant: ##\displaystyle\lim_{x \to{a}}{kf(x)}=kL##
5. Limit of a division: ##\displaystyle\lim_{x \to a}{\dfrac{f(x)}{g(x)}}=\dfrac{L}{M}\qquad\mbox{if}\;M\neq 0##
If ##m## is an integer and ##n## a positive integer, then
6. Limit of a power: ##\displaystyle\lim_{x \to{a}}{[f(x)]^{m/n}}=L^{m/n}##, whenever ##L>0## if ##n## is even, and ##L\neq 0## if ##m<0##
If ##f(x)\geq g(x)## at an interval that contains ##a## inside, then
7. Order preservation: ##L\geq M##

we have

$$\lim_{h \to{0}}{f(x+h)-f(x))}=\lim_{h \to{0}}{\left (\dfrac{f(x+h)-f(x)}{h}\right)(h)}=(f'(x))(0)=0$$

This is equivalent to ##\lim_{h \to{0}}{f(x+h)=f(x)}##, and means ##f## is continous.So ##\lim_{h \to{0}}{E(k)}=\lim_{h \to{0}}{(g(x+h)-g(h)=0}##. As ##E## is continuous in 0, ##\lim_{h \to{0}}{E(k)}=\lim_{k \to{0}}{E(k)}=E(0)=0##. This way,

$$\dfrac{d}{dx}f(g(x))=\displaystyle\lim_{h \to{0}}{\dfrac{f(g(x+h))-f(g(x))}{h}}$$

$$ \qquad\qquad\qquad=\displaystyle\lim_{h \to{0}}{(f'(g(x)+E(k))\dfrac{g(x+h)-g(x)}{h}}$$

$$\qquad\qquad\qquad=(f'(g(x)+0)g(x)=f'(g(x))g'(x)$$

As we wanted to prove."

Doubts:

-¿##\lim_{h \to{0}}{E(k)}=\lim_{k \to{0}}{E(k)}##?

Attempt: ##\lim_{h \to{0}}{E(k)}=\displaystyle\lim_{h \to{0}}{\dfrac{E(k+h)-E(k)}{h}}=\displaystyle\lim_{k \to{0}}{\dfrac{E(k)-E(0)}{k-0}}## (Bad, I guess)

-¿Why ##f'(g(x))## remains the same at the last step?:

$$ \qquad\qquad\qquad=\displaystyle\lim_{h \to{0}}{(f'(g(x)+E(k))\dfrac{g(x+h)-g(x)}{h}}$$

$$\qquad\qquad\qquad=(f'(g(x)+0)g(x)=f'(g(x))g'(x)$$

Attempt: are different variables

Greetings to everybody, have a nice St Joseph's Day!
 
Mathematics news on Phys.org
mcastillo356 said:
-¿limh→0E(k)=limk→0E(k)?
No. ##\lim_{h \to 0} E(k) = E(k)##, since E(k) doesn't involve h in any way.

For the same reason, if f(x) = 2x + 3, ##\lim_{z \to 19} f(x) = f(x)##
 
  • Love
Likes mcastillo356
Thanks!
Greetings
 
mcastillo356 said:
-¿Why f′(g(x)) remains the same at the last step?:
For the same reason as before -- f'(g(x)) doesn't involve h, so in the limit process (with h approaching 0), f'(g(x)) is unaffected.
 
  • Like
Likes mcastillo356
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
931
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K