Poirot1
- 243
- 0
From wikipedia I read that every linear map from T:V->V, where V is finite dimensional and dim(V) > 1 has an eigenvector. What is the proof ?
This result is only true if V is a vector space over an algebraically closed field, such as the complex numbers. For example, the map $T:\mathbb{R}^2 \to \mathbb{R}^2$ with matrix $\begin{bmatrix}0&1 \\-1&0\end{bmatrix}$ represents the operation of rotation through a right angle, and it is fairly obvious that there are no nonzero vectors in $\mathbb{R}^2$ whose direction is left unchanged by this map. However, if you allow complex scalars then $(1,i)$ is an eigenvector, with eigenvalue $i$, because $T(1,i) = (i,-1) = i(1,i)$.Poirot said:From wikipedia I read that every linear map from T:V->V, where V is finite dimensional and dim(V) > 1 has an eigenvector. What is the proof ?