Proof of Inequality: $|a+b| \leq |a| + |b|$

  • Context: MHB 
  • Thread starter Thread starter solakis1
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary

Discussion Overview

The discussion revolves around proving the inequality $\dfrac{|a+b|}{1+|a+b|} \leq \dfrac{|a|}{1+|a|} + \dfrac{|b|}{1+|b|}$. Participants explore various approaches and mathematical manipulations to establish this inequality, with a focus on algebraic transformations and the properties of absolute values.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose starting from the known inequality $|a+b| \leq |a| + |b|$ as a basis for proving the new inequality.
  • Others present algebraic manipulations that involve adding terms and factoring to derive the inequality step by step.
  • A participant questions the validity of the inequality by providing a specific counterexample with $a=3$ and $b=-3$, suggesting that it leads to an incorrect conclusion.
  • Some participants correct earlier statements regarding the conditions under which certain terms are non-negative, emphasizing the importance of these conditions in the proof.
  • Multiple participants reiterate similar steps in their proofs, indicating a shared approach but also highlighting slight variations in their reasoning and notation.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the validity of the inequality. While many provide similar proofs, there are also challenges and counterexamples presented that suggest the inequality may not hold in all cases.

Contextual Notes

Some participants note limitations in their proofs, such as assumptions about the non-negativity of certain terms and the dependence on specific values of $a$ and $b$. There are also unresolved mathematical steps that could affect the overall validity of the arguments presented.

solakis1
Messages
407
Reaction score
0
prove the following inequality:
$\dfrac{|a+b|}{1+|a+b|}$ $\leq \dfrac{|a|}{1+|a|}$ +$\dfrac{|b|}{1+|b|}$
 
Mathematics news on Phys.org
to ifdahl[sp] ifdahl in the same way you proved the post : interesting inequality you can prove the above inequality[/sp]
 
Case I: $a$ and $b$ have the same sign:

Let the function $f$ be defined by: $f(x) = \frac{\left | x \right |}{1+\left | x \right |}$. Obviously $f$ is even, and $f’(x)$ is not defined in $x=0$, but $f$ is differentiable in the two domains $\mathbb{R}_-$ and $\mathbb{R}_+$, and we have by inspection: $f’’(x) < 0$ in both domains. Thus $f$ is concave on both sides of the ordinate.

Jensens inequality with equal weights then gives us:

\[f\left ( \frac{a+b}{2} \right ) \leq \frac{1}{2}\left ( f(a) + f(b)\right ) \\ \frac{\frac{1}{2}\left | a+b \right |}{1+\frac{1}{2}\left | a+b \right |} \leq \frac{1}{2}\left ( \frac{\left | a \right |}{1+\left | a \right |} +\frac{\left | b \right |}{1+\left | b \right |} \right )\] - or

\[\frac{\left | a+b \right |}{1+\frac{1}{2}\left | a+b \right |} \leq \frac{\left | a \right |}{1+\left | a \right |} +\frac{\left | b \right |}{1+\left | b \right |}\], which immediately implies:

\[\frac{\left | a+b \right |}{1+\left | a+b \right |} \leq \frac{\left | a \right |}{1+\left | a \right |} +\frac{\left | b \right |}{1+\left | b \right |}\].

Case II: $a$ and $b$ have opposite sign. Here, we cannot use the concavity argument, but the inequality is still valid:

First note, that: $\left | a+b \right |\leq max\left \{ \left | a \right |,\left | b \right | \right \}$

WLOG let $\left | b \right | \geq \left | a+b \right |$. Denote $x= \left | a+b \right |, \Delta = \left | b \right |-x \geq 0$:

The inequality: $\frac{\left | a+b \right |}{1+\left | a+b \right |}=\frac{x}{1+x} \leq \frac{x+\Delta }{1+x+\Delta } = \frac{\left | b \right |}{1+\left | b \right |}$ is true because:

\[\frac{x+\Delta }{1+x+\Delta }-\frac{x}{1+x}= \frac{(1+x)(x+\Delta )-x(1+x+\Delta )}{(1+x)(1+x+\Delta )}=\frac{\Delta }{(1+x)(1+x+\Delta )}\geq 0\]. Thus the inequality holds, from which we immediately have:

\[\frac{\left | a+b \right |}{1+\left | a+b \right |}\leq \frac{\left | b \right |}{1+\left | b \right |}\leq \frac{\left | a \right |}{1+\left | a \right |}+\frac{\left | b \right |}{1+\left | b \right |}\].
 
The triangle inequality tells us that $|a+b|\le |a|+|b|$. So:
$$\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a+b|} + \frac{|b|}{1+|a+b|} $$
Furthermore, positive fractions are smaller if their denominator is bigger. It means that $\frac{1}{1+|a+b|}\le \frac 1{1+|a|}$ and also $\frac{1}{1+|a+b|}\le \frac 1{1+|b|}$.
Therefore:
$$\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a+b|} + \frac{|b|}{1+|a+b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$$
 
Klaas van Aarsen said:
The triangle inequality tells us that $|a+b|\le |a|+|b|$. So:
$$\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a+b|} + \frac{|b|}{1+|a+b|} $$
Furthermore, positive fractions are smaller if their denominator is bigger. It means that $\frac{1}{1+|a+b|}\le \frac 1{1+|a|}$ and also $\frac{1}{1+|a+b|}\le \frac 1{1+|b|}$.
Therefore:
$$\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a+b|} + \frac{|b|}{1+|a+b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$$

[sp]for a=3 and for b=-:3 does it not the inequality : $\frac{1}{1+|a+b|}\le \frac 1{1+|a|}$ become : $1\leq \dfrac{1}{4}$[/sp]
 
solakis said:
prove the following inequality:
$\dfrac{|a+b|}{1+|a+b|}$ $\leq \dfrac{|a|}{1+|a|}$ +$\dfrac{|b|}{1+|b|}$
[sp]we have;

$\dfrac{|a+b|}{1+|a+b|}$ $\leq\dfrac{|a|(1+|b|)+|b|(1+|a|)}{(1+|a|)(1+|b|)}$
or
$|a+b|(1+|a|)(1+|b|)\leq(1+|a+b|)[|a|(1+|b|)+|b|(1+|a|)]$
or
$|a+b|(1+|a|+|b|+|a||b|)\leq (1+|a+b|)(|a|+|b|+2|a||b|)$
or $|a+b|+|a||a+b|+|b||a+b|+|a||b||a+b|\leq |a|+|b|+2|a||b|+|a||a+b|+|b||a+b|+2|a||b||a+b|$
And after canceling terms we end up with:
$|a+b|\leq |a|+|b|+2|a||b|+|a||b||a+b|$
which is true because :
$|a+b|\leq |a|+|b|$
$0\leq2|a||b| =|ab|$
$0\leq |a||b||a+b|=|ab(a+b)| $
Bebause $ |X|\geq 0 $for all real X[/sp]
 
[sp]Let's start with:
$|a+b|\leq |a|+|b|$
$0\leq 2|a||b|$
$0\leq 2|a||b|$
adding the above we have:

$|a+b|\leq |a|+|b|+2|a||b|+|a||b||a+b|$

Now adding to both sides$ |a||a+b|$....$|b||a+b|$.......$|a||b||a+b|$
we have:

$|a+b|+|a||a+b|+|b||a+b|+|a||b||a+b|\leq |a|+|b|+2|a||b|+|a||a+b|+|b||a+b|+2|a||b||a+b|$

Taking common factor $|a+b|$ in both sides we have:

$|a+b|(1+|a|+|b|+|a||b|)\leq |a|+|b|+2|a||b|+|a+b|( |a|+|b|+2|a||b|)$............(1)

Now $1+|a|+|b|+|a||b|=1+|a|+|b|(1+|a|)=(1+|a|)(1+|b|)$................(2)

And substituting (2) into (1) we have:

$|a+b|(1+|a|)(1+|b|)\leq |a|+|b|+2|a||b|+|a+b|( |a|+|b|+2|a||b|)$...............(3)

And taking common factor:$|a|+|b|+2|a||b|$ in the left side (3) becomes:

$|a+b|(1+|a|)(1+|b|)\leq(|a|+|b|+2|a||b|)(1+|a+b|)$...............(4)

But $1+|a+b|>0\Rightarrow\dfrac{1}{1+|a+b|}>0$...............(5)

So we can multiply (4) by (5) and we have:

$\dfrac{|a+b|(1+|a|)(1+|b|)}{1+|a+b|}\leq |a|+|b|+2|a||b|$..........(6)

But $|a|+|b|+2|a||b|=|a|+|b|+|a||b|+|a||b|=|a|(1+|b|)+|b|(1+|a|)$...........(7)

And substituting (6) into (7) into (6) we have:

$\dfrac{|a+b|(1+|a|)(1+|b|)}{1+|a+b|}\leq |a|(1+|b|)+|b|(1+|a|)$..............(8)

But $1+|a|>0$ also $1+|b|>0$ hence $(1+|a|)(1+|b|)>0\Rightarrow\dfrac{1}{(1+|a|)(1+|b|)}>0$.......(9)

So we can multiply (8) by (9) and the result is:

$\dfrac{|a+b|}{1+|a+b|}\leq\dfrac{|a|(1+|b|)+|b|(1+|a|)}{(1+|a|)(1+|b|)}$

$=\dfrac{|a|}{1+|a|} +\dfrac{|b|}{1+|b|}$[/sp[/sp]
 
solakis said:
[sp]Let's start with:
$|a+b|\leq |a|+|b|$
$0\leq 2|a||b|$
$0\leq 2|a||b||a+b|$
adding the above we have:

$|a+b|\leq |a|+|b|+2|a||b|+|a||b||a+b|$

Now adding to both sides$ |a||a+b|$....$|b||a+b|$.......$|a||b||a+b|$
we have:

$|a+b|+|a||a+b|+|b||a+b|+|a||b||a+b|\leq |a|+|b|+2|a||b|+|a||a+b|+|b||a+b|+2|a||b||a+b|$

Taking common factor $|a+b|$ in both sides we have:

$|a+b|(1+|a|+|b|+|a||b|)\leq |a|+|b|+2|a||b|+|a+b|( |a|+|b|+2|a||b|)$............(1)

Now $1+|a|+|b|+|a||b|=1+|a|+|b|(1+|a|)=(1+|a|)(1+|b|)$................(2)

And substituting (2) into (1) we have:

$|a+b|(1+|a|)(1+|b|)\leq |a|+|b|+2|a||b|+|a+b|( |a|+|b|+2|a||b|)$...............(3)

And taking common factor:$|a|+|b|+2|a||b|$ in the left side (3) becomes:

$|a+b|(1+|a|)(1+|b|)\leq(|a|+|b|+2|a||b|)(1+|a+b|)$...............(4)

But $1+|a+b|>0\Rightarrow\dfrac{1}{1+|a+b|}>0$...............(5)

So we can multiply (4) by (5) and we have:

$\dfrac{|a+b|(1+|a|)(1+|b|)}{1+|a+b|}\leq |a|+|b|+2|a||b|$..........(6)

But $|a|+|b|+2|a||b|=|a|+|b|+|a||b|+|a||b|=|a|(1+|b|)+|b|(1+|a|)$...........(7)

And substituting (6) into (7) into (6) we have:

$\dfrac{|a+b|(1+|a|)(1+|b|)}{1+|a+b|}\leq |a|(1+|b|)+|b|(1+|a|)$..............(8)

But $1+|a|>0$ also $1+|b|>0$ hence $(1+|a|)(1+|b|)>0\Rightarrow\dfrac{1}{(1+|a|)(1+|b|)}>0$.......(9)

So we can multiply (8) by (9) and the result is:

$\dfrac{|a+b|}{1+|a+b|}\leq\dfrac{|a|(1+|b|)+|b|(1+|a|)}{(1+|a|)(1+|b|)}$

$=\dfrac{|a|}{1+|a|} +\dfrac{|b|}{1+|b|}$[/sp]
 
Sorry there is a terrible typo in both of my two prεvious solutions;
For the 3rd inequality from the top instead of $0\leq 2|a||b|$ or $0\leq 2|a||b||a+b|$ it shoulb be:

$0\leq |a||b||a+b|$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K