Proof of PSF quadratic factorising

  • Thread starter Thread starter bairdos
  • Start date Start date
  • Tags Tags
    Proof Quadratic
Click For Summary
SUMMARY

The discussion focuses on the proof of the Perfect Square Factorization (PSF) method for quadratic equations, specifically for polynomials of the form ax² + bx + c = 0 without common factors among a, b, and c. The proof demonstrates that rational roots exist when the discriminant (b² - 4ac) is zero or a positive square number, leading to the conclusion that there is a unique pair of integers S and T that satisfy the equations S + T = b and ST = ac. The proof emphasizes the integer nature of S and T derived from the quadratic formula, highlighting the conditions under which the discriminant is even.

PREREQUISITES
  • Understanding of quadratic equations and their standard form.
  • Familiarity with the quadratic formula and its applications.
  • Knowledge of rational numbers and integer properties.
  • Basic algebraic manipulation skills.
NEXT STEPS
  • Study the derivation and applications of the quadratic formula in greater detail.
  • Explore the implications of the discriminant in determining the nature of roots in quadratic equations.
  • Learn about polynomial factorization techniques, including synthetic division and factoring by grouping.
  • Investigate the relationship between rational roots and the Rational Root Theorem.
USEFUL FOR

Mathematics educators, high school students studying algebra, and anyone interested in understanding the foundations of quadratic equations and their factorization methods.

bairdos
Messages
2
Reaction score
0
Hi! I came across the below thread where a user ('krackers') asked for a proof of the PSF factorising method for quadratic equations.
The thread is now closed so I'd like to post my proof here.
(The proof considers the simplest case where there are no common factors for a,b,c in the quadratic. A proof for cases with a common factor can easily be created with the same structure as below with a common factor 'd' added.)

https://www.physicsforums.com/showthread.php?t=621835

Given a polynomial ax^2 + bx + c = 0 there are rational roots if (b^2 - 4ac) is 0 or a positive square number
The rational factors can be written as p/q and m/n (fractions in simplest form)
therefore the polynomial can be written as (x-p/q)(x-m/n) = 0
multiplying by qn: (qx-p)(nx-m) = 0
which becomes nqx^2 - mqx -npx + mp = 0
so a = nq, c =mp and b is the sum of the middle terms (-mq and -np)
note that a*c= mnpq and that the product of the two numbers (-mq) and (-np) is also mnpq
so therefore if the polynomial has rational roots then there must be two numbers (-mq and -np) that add to give 'b' and multiply to give the product of 'a' and 'c'.
These numbers can be found by trial and error (because m,n,p,q are all integers)

To prove that there is only and only one pair of numbers S,T you can solve the simultaneous equations: S + T = b, ST = ac
(using the quadratic formula and the condition that (b^2-4ac) is 0 or a positive square number)
(of course there can only be one pair of numbers because otherwise there would be more than one factorisation of the polynomial resulting in there being multiple possible sets of roots).

I developed this proof because I felt it was my obligation as a high school maths tutor to understand why everything that I teach works :)
 
Mathematics news on Phys.org
Addendum (I'm a newbie and couldn't see a way to edit the original post):

I wondered why S,T always turn out to be integers when you calculate them by solving simultaneous equations.
The formulas for S,T are (-b+root(b^2-4ac))/2 and (-b-root(b^2-4ac)/2).
The trick is that b^2-4ac is only even if b is even so the numerator of each fraction consists of two even numbers added or subtracted together. In both cases this gives an even number which is halved to give an integer.
Similarly b^2-4ac is only even if b is odd and the numerator of each fraction consists of two odd numbers added or subtracted together. This also gives an even number in both cases which is halved to give an integer.

Ahh, closure.
 

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K