joej24
- 76
- 0
Homework Statement
Proove \, that \, if \, \lim_{n \to \infty} a_{n} \neq 0 \, , \, \sum^\infty a_{n} \, diverges
Homework Equations
S_{n} - S_{n-1} = a_{n}
\lim_{n \to \infty} S_{n} = S
The Attempt at a Solution
S_{n} - S_{n-1} = a_{n}
\lim_{n \to \infty} S_{n} - S_{n-1} = \lim_{n \to \infty} a_{n}
Since a_{n} \neq 0, we can divide by a_{n}
\lim_{n \to \infty} \frac {S_{n} - S_{n-1}} {a_{n}} = 1
We can rewrite S_{n} and S_{n-1} as \sum^\infty a_{n} and \sum^\infty a_{n-1}
So, \lim_{n \to \infty} \frac {\sum^\infty a_{n} - \sum^\infty a_{n-1}} {a_{n}} = 1
Rearranging, \lim_{n \to \infty} \frac{\sum^\infty a_{n}} {a_{n}} - \sum^\infty \frac{a_{n-1}} {a_{n}} = 1
The term inside the second series is 1, so
\lim_{n \to \infty} \frac{\sum^\infty a_{n}} {a_{n}} = 1 + \sum^\infty 1
Thus, S_{n} = \lim_{n \to \infty} \sum^\infty a_{n} = a_{n} (1 + \sum^\infty 1)
Since \sum^\infty 1 diverges, we can say that S_{n} diverges and therefore, if \lim_{n \to \infty} a_{n} \neq 0 , \sum^\infty a_{n} diverges.
Is this proof complete?
Last edited: