(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Prove if sequence [itex]a_{n}[/itex] converges and sequence [itex]b_{n}[/itex] diverges, then the sequence [itex]a_{n}[/itex]+[itex]b_{n}[/itex] also diverges.

2. Relevant equations

3. The attempt at a solution

My professor recommended a proof by contradiction. That is, suppose [itex]a_{n}[/itex]+[itex]b_{n}[/itex] does converge. Then, for every ε > 0, there exists a natural number [itex]N_{1}[/itex] so that n > [itex]N_{1}[/itex] implies |[itex]a_{n}[/itex]+[itex]b_{n}[/itex] - L|< ε

We already know there exists [itex]N_{2}[/itex] so that n > [itex]N_{2}[/itex] implies |[itex]a_{n}[/itex] - M| < ε. So let N = max{[itex]N_{1}[/itex], [itex]N_{2}[/itex]}. Then n > N means we know [itex]a_{n}[/itex] is "very close" to M. My purpose in this is to try and show that this implies [itex]b_{n}[/itex] has a limit (that is, it converges) providing a contradiction. However, I'm not sure how to go about this.

**Physics Forums - The Fusion of Science and Community**

# Proof on Sequences: Sum of a convergent and divergent diverges

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Proof on Sequences: Sum of a convergent and divergent diverges

Loading...

**Physics Forums - The Fusion of Science and Community**