MHB Proof that covariance matrix is positive semidefinite

Click For Summary
The discussion focuses on understanding the proof that a covariance matrix is positive semidefinite. A user expresses difficulty in grasping the transition from the expression E{u^T (x−x̄)(x−x̄)^T u} to E{s^2}, questioning the appearance of s^2. A response clarifies that to demonstrate v^T C v ≥ 0, where C is defined as a sum involving the deviations from the mean, it suffices to show that each term v^T (x_i - μ)(x_i - μ)^T v is non-negative. This is supported by basic properties of vectors and matrices, confirming that the covariance matrix indeed maintains the positive semidefinite property. Understanding these foundational concepts is crucial for comprehending the proof.
AlanTuring
Messages
6
Reaction score
0
Hello,

i am having a hard time understanding the proof that a covariance matrix is "positive semidefinite" ...

i found a numbe of different proofs on the web, but they are all far too complicated / and/ or not enogh detailed for me.

View attachment 3290

Such as in the last anser of the link :
probability - What is the proof that covariance matrices are always semi-definite? - Mathematics Stack Exchange

(last answer, in particular i don't understad how they can passe from an expression
E{u T (x−x ¯ )(x−x ¯ ) T u}
to
E{s^2 }

... from where does thes s^2 "magically" appear ?

;)
 

Attachments

  • covmatrix.jpg
    covmatrix.jpg
    22.8 KB · Views: 160
Physics news on Phys.org
Machupicchu said:
Hello,

i am having a hard time understanding the proof that a covariance matrix is "positive semidefinite" ...

i found a numbe of different proofs on the web, but they are all far too complicated / and/ or not enogh detailed for me.

View attachment 3290

Such as in the last anser of the link :
probability - What is the proof that covariance matrices are always semi-definite? - Mathematics Stack Exchange

(last answer, in particular i don't understad how they can passe from an expression
E{u T (x−x ¯ )(x−x ¯ ) T u}
to
E{s^2 }

... from where does thes s^2 "magically" appear ?

;)
Hi Machupicchu, and welcome to MHB!

Three basic facts about vectors and matrices: (1) if $w$ is a column vector then $w^{\mathsf{T}}w \geqslant0$; (2) for matrices $A,B$ with product $AB$, the transpose of the product is the product of the transposes in reverse order, in other words $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$; (3) taking the transpose twice gets you back where you started from, $(A^{\mathsf{T}})^{\mathsf{T}} = A$.

You want to show that $v^{\mathsf{T}}Cv\geqslant0$, where $$C = \frac1{n-1}\sum_{i=1}^n(\mathbf{x}_i - \mathbf{\mu}) (\mathbf{x}_i - \mathbf{\mu})^{\mathsf{T}}$$. Since $$v^{\mathsf{T}}Cv = \frac1{n-1}\sum_{i=1}^nv^{\mathsf{T}}(\mathbf{x}_i - \mathbf{\mu}) (\mathbf{x}_i - \mathbf{\mu})^{\mathsf{T}}v$$, it will be enough to show that $v^{\mathsf{T}}(\mathbf{x}_i - \mathbf{\mu}) (\mathbf{x}_i - \mathbf{\mu})^{\mathsf{T}}v$ (for each $i$). But by those basic facts above, $v^{\mathsf{T}}(\mathbf{x}_i - \mathbf{\mu}) (\mathbf{x}_i - \mathbf{\mu})^{\mathsf{T}}v = \bigl((\mathbf{x}_i - \mathbf{\mu})^{\mathsf{T}}v\bigr)^{\mathsf{T}} \bigl((\mathbf{x}_i - \mathbf{\mu})^{\mathsf{T}}v\bigr) \geqslant0$.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
1
Views
3K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K